[Deux nouvèlles inégalités de type Poincaré–Friedrichs sur les espaces discontinus pour les équations de Maxwell]
On présente deux nouvelles inégalités de type Poincaré–Friedrichs sur les espaces discontinus. La preuve des inégalités est basée sur des formules de décomposition orthogonale de .
We present two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations. The proofs of the inequalities are based on some decompositions formulas of .
Accepté le :
Publié le :
Abdelhamid Zaghdani 1 ; Christian Daveau 1
@article{CRMATH_2006__342_1_29_0, author = {Abdelhamid Zaghdani and Christian Daveau}, title = {Two new discrete inequalities of {Poincar\'e{\textendash}Friedrichs} on discontinuous spaces for {Maxwell's} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {29--32}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2005.10.026}, language = {en}, }
TY - JOUR AU - Abdelhamid Zaghdani AU - Christian Daveau TI - Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations JO - Comptes Rendus. Mathématique PY - 2006 SP - 29 EP - 32 VL - 342 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2005.10.026 LA - en ID - CRMATH_2006__342_1_29_0 ER -
%0 Journal Article %A Abdelhamid Zaghdani %A Christian Daveau %T Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations %J Comptes Rendus. Mathématique %D 2006 %P 29-32 %V 342 %N 1 %I Elsevier %R 10.1016/j.crma.2005.10.026 %G en %F CRMATH_2006__342_1_29_0
Abdelhamid Zaghdani; Christian Daveau. Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations. Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 29-32. doi : 10.1016/j.crma.2005.10.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.026/
[1] Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986
[2] Mixed formulations for finite element analysis of magnetostatic and electrostatic problems, Japan J. Appl. Math, Volume 6 (1989), pp. 209-221
[3] Problèmes aux limites non homogènes et applications, Dunot, Paris, 1968
[4] S. Prudhomme, F. Pascal, J.T. Oden, A. Romkes, Review of a priori estimation for discontinuous Galerkin method, Tech. report 2000-27, TICAM, University of Texas at Austin, 2000
Cité par Sources :
Commentaires - Politique