[Deux nouvèlles inégalités de type Poincaré–Friedrichs sur les espaces discontinus pour les équations de Maxwell]
On présente deux nouvelles inégalités de type Poincaré–Friedrichs sur les espaces discontinus. La preuve des inégalités est basée sur des formules de décomposition orthogonale de
We present two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations. The proofs of the inequalities are based on some decompositions formulas of
Accepté le :
Publié le :
Abdelhamid Zaghdani 1 ; Christian Daveau 1
@article{CRMATH_2006__342_1_29_0, author = {Abdelhamid Zaghdani and Christian Daveau}, title = {Two new discrete inequalities of {Poincar\'e{\textendash}Friedrichs} on discontinuous spaces for {Maxwell's} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {29--32}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2005.10.026}, language = {en}, }
TY - JOUR AU - Abdelhamid Zaghdani AU - Christian Daveau TI - Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations JO - Comptes Rendus. Mathématique PY - 2006 SP - 29 EP - 32 VL - 342 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2005.10.026 LA - en ID - CRMATH_2006__342_1_29_0 ER -
%0 Journal Article %A Abdelhamid Zaghdani %A Christian Daveau %T Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations %J Comptes Rendus. Mathématique %D 2006 %P 29-32 %V 342 %N 1 %I Elsevier %R 10.1016/j.crma.2005.10.026 %G en %F CRMATH_2006__342_1_29_0
Abdelhamid Zaghdani; Christian Daveau. Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations. Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 29-32. doi : 10.1016/j.crma.2005.10.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.026/
[1] Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986
[2] Mixed formulations for finite element analysis of magnetostatic and electrostatic problems, Japan J. Appl. Math, Volume 6 (1989), pp. 209-221
[3] Problèmes aux limites non homogènes et applications, Dunot, Paris, 1968
[4] S. Prudhomme, F. Pascal, J.T. Oden, A. Romkes, Review of a priori estimation for discontinuous Galerkin method, Tech. report 2000-27, TICAM, University of Texas at Austin, 2000
- A new hybridized mixed weak Galerkin method for second-order elliptic problems, Journal of Computational Mathematics, Volume 40 (2022) no. 4, pp. 501-518 | DOI:10.4208/jcm.2011-m2019-0142 | Zbl:1499.65691
- A Hybridizable Discontinuous Galerkin Method for the Quad-Curl Problem, Journal of Scientific Computing, Volume 87 (2021) no. 1 | DOI:10.1007/s10915-021-01420-3
- A Discontinuous Galerkin Method for the Wave Equation: A hp-a Priori Error Estimate, Journal of Applied Sciences, Volume 17 (2017) no. 2, p. 81 | DOI:10.3923/jas.2017.81.89
- Construction of an interpolant operator: application to the three-dimensional electrostatic problem, Applied Mathematics Letters, Volume 22 (2009) no. 11, pp. 1685-1689 | DOI:10.1016/j.aml.2009.06.002 | Zbl:1179.78106
- A
-discontinuous Galerkin method for the time-dependent Maxwell's equation: a priori error estimate, Journal of Applied Mathematics and Computing, Volume 30 (2009) no. 1-2, pp. 1-8 | DOI:10.1007/s12190-008-0153-1 | Zbl:1177.78053
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique