[Feuilletages Riemanniens singuliers]
Nous prouvons que tout feuilletage singulier sur une variété compacte qu'a une métrique riemannienne feuilletée avec feuilles minimales est régulier.
We prove that a singular foliation on a compact manifold admitting an adapted Riemannian metric for which all leaves are minimal must be regular.
Accepté le :
Publié le :
Vicente Miquel 1 ; Robert A. Wolak 2
@article{CRMATH_2006__342_1_33_0, author = {Vicente Miquel and Robert A. Wolak}, title = {Minimal singular {Riemannian} foliations}, journal = {Comptes Rendus. Math\'ematique}, pages = {33--36}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2005.10.031}, language = {en}, }
Vicente Miquel; Robert A. Wolak. Minimal singular Riemannian foliations. Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 33-36. doi : 10.1016/j.crma.2005.10.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.031/
[1] Some remarks on foliations with minimal leaves, J. Differential Geom., Volume 15 (1980), pp. 269-284
[2] Duality and minimality in Riemannian foliations, Comment. Math. Helv., Volume 67 (1992), pp. 17-27
[3] Riemannian Foliations, Progr. Math., vol. 73, Birkhäuser, 1988
[4] Riemannian Geometry, Transl. Math. Monogr., vol. 149, Amer. Math. Soc., 1996
[5] Geometry of Foliations, Bikhäuser, 1997
[6] Lectures on the Geometry of Poisson Manifolds, Progr. Math., vol. 118, Birkhäuser, 1994
Cité par Sources :
⁎ Partly supported by DGI (Spain) and FEDER Project MTM 2004-06015-C02-01, a sabbatical year from the University of Valencia and by Polish KBN grant 2PO3A021 25.
Commentaires - Politique