[Une condition de type courbure-dimension pour des espaces métriques mesurés]
Nous présentons une condition de type courbure-dimension
Notre condition est stable pour la convergence. Elle comporte des conséquences géométriques diverses, comme les théorèmes de Bishop–Gromov et de Bonnet–Myers. Dans les deux cas, on obtient des estimations optimales connues dans le cas riemannien.
We present a curvature-dimension condition
Our curvature-dimension condition is stable under convergence. Furthermore, it entails various geometric consequences e.g. the Bishop–Gromov theorem and the Bonnet–Myers theorem. In both cases, we obtain the sharp estimates known from the Riemannian case.
Accepté le :
Publié le :
Karl-Theodor Sturm 1
@article{CRMATH_2006__342_3_197_0, author = {Karl-Theodor Sturm}, title = {A curvature-dimension condition for metric measure spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {197--200}, publisher = {Elsevier}, volume = {342}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2005.11.008}, language = {en}, }
Karl-Theodor Sturm. A curvature-dimension condition for metric measure spaces. Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 197-200. doi : 10.1016/j.crma.2005.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.11.008/
[1] Diffusions hypercontractives, Séminaire de Probabilités XIX, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 177-206
[2] Some new results on eigenvectors via dimension, diameter and Ricci curvature, Adv. in Math., Volume 155 (2000), pp. 98-153
[3] A Riemannian interpolation inequality à la Borell, Brascamb and Lieb, Invent. Math., Volume 146 (2001), pp. 219-257
[4] J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Preprint, 2004
[5] Convex functionals of probability measures and nonlinear diffusions on manifolds, J. Math. Pures Appl., Volume 84 (2005), pp. 149-168
[6] Generalized Ricci bounds and convergence of metric measure spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 235-238
[7] K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math., in press
[8] K.T. Sturm, On the geometry of metric measure spaces. II, Acta Math., in press
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier