Nous étudions le comportement asymptotique du processus empirique d'une fonctionnelle d'un champ gaussien sur
We study the asymptotic behaviour of the doubly indexed empirical process of stationary Gaussian subordinated random fields with long-range dependence. Contrary to the situation chosen in the pre-existing papers, the long memory is not necessarily isotropic. In all the investigated cases, the limiting process is degenerated insofar as it has the form
Accepté le :
Publié le :
Frédéric Lavancier 1, 2
@article{CRMATH_2006__342_5_345_0, author = {Fr\'ed\'eric Lavancier}, title = {Processus empirique de fonctionnelles de champs gaussiens \`a longue m\'emoire}, journal = {Comptes Rendus. Math\'ematique}, pages = {345--348}, publisher = {Elsevier}, volume = {342}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2005.12.029}, language = {fr}, }
Frédéric Lavancier. Processus empirique de fonctionnelles de champs gaussiens à longue mémoire. Comptes Rendus. Mathématique, Volume 342 (2006) no. 5, pp. 345-348. doi : 10.1016/j.crma.2005.12.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.029/
[1] Statistics for Long Memory Processes, Chapman and Hall, New York, 1994
[2] Empirical Process Techniques for Dependent Data, Birkhäuser, Boston, 2002
[3] The empirical process of some long-range dependent sequences with an application to U-statistics, Ann. Statist., Volume 4 (1989), pp. 1767-1783
[4] Non central limit theorems for non-linear functionals of Gaussian fields, Z. Warsch. Verw. Gebiete, Volume 50 (1979), pp. 27-52
[5] Asymptotics of weighted empirical processes of linear fields with long-range dependence, Ann. Inst. H. Poincaré, Volume 6 (2002), pp. 879-896
[6] Functional limit theorem for the empirical process of a class of Bernoulli shifts with long memory, J. Theoret. Probab., Volume 18 (2005), pp. 161-186
[7] Long-Range Dependence: Theory and Applications, Birkhäuser, Boston, 2003
[8] On the asymptotic expansion of the empirical process of long memory moving averages, Ann. Statist., Volume 24 (1996), pp. 992-1024
[9] F. Lavancier, Invariance principles for non-isotropic long memory random fields, Preprint, 2005. Disponible à http://math.univ-lille1.fr/~lavancier
[10] F. Lavancier, Processus empirique de fonctionnelles de champs gaussiens à longue memoire, Preprint 63, IX, IRMA, Lille, 2005. Disponible à http://math.univ-lille1.fr/~lavancier
- Functional central limit theorems for persistent Betti numbers on cylindrical networks, Scandinavian Journal of Statistics, Volume 49 (2022) no. 1, p. 427 | DOI:10.1111/sjos.12524
- Invariance principles for operator-scaling Gaussian random fields, The Annals of Applied Probability, Volume 27 (2017) no. 2 | DOI:10.1214/16-aap1229
- Asymptotic results for spatial causal ARMA models, Electronic Journal of Statistics, Volume 4 (2010) no. none | DOI:10.1214/09-ejs533
- Long memory random fields, Dependence in Probability and Statistics, Volume 187 (2006), p. 195 | DOI:10.1007/0-387-36062-x_9
Cité par 4 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier