[Diffusion versus absorption dans des problèmes paraboliques semi-linéaires]
Nous étudions la limite, quand , des solutions de (E) dans , avec , . Nous montrons que si où vérifie , la fonction limite est une solution of (E) avec une singularité isolée en , alors que si , est la solution maximale de (E). Nous examinons des questions semblables pour des équations des type suivants avec et .
We study the limit, when , of the solutions of (E) in , , with , . If where satisfies to , the limit function is a solution of (E) with a single singularity at , while if , is the maximal solution of (E). We examine similar questions for equations such as with and .
Publié le :
Andrey Shishkov 1 ; Laurent Véron 2
@article{CRMATH_2006__342_8_569_0, author = {Andrey Shishkov and Laurent V\'eron}, title = {Diffusion versus absorption in semilinear parabolic problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {569--574}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.01.021}, language = {en}, }
Andrey Shishkov; Laurent Véron. Diffusion versus absorption in semilinear parabolic problems. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 569-574. doi : 10.1016/j.crma.2006.01.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.021/
[1] A very singular solution of the heat equation with absorption, Arch. Rational Mech. Anal., Volume 96 (1985), pp. 185-209
[2] Saint-Venant's principle in blow-up for higher-order quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 133 (2003), pp. 1075-1119
[3] Initial trace of positve solutions to semilinear parabolic inequalities, Adv. Nonlinear Stud., Volume 2 (2002), pp. 395-436
[4] Method of introducing of a parameter in evolution equation, Russian Math. Surveys, Volume 33 (1978), pp. 7-74
[5] A very singular solution of the porous media equation with absorption, J. Differential Equations, Volume 65 (1986), pp. 396-410
[6] Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order, Sbornik: Mathematics, Volume 190 (1999) no. 12, pp. 1843-1869
Cité par Sources :
Commentaires - Politique