Comptes Rendus
Partial Differential Equations
Neumann problem for a quasilinear elliptic equation in a varying domain
Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 563-568.

We investigate the Neumann problem for a nonlinear elliptic operator of Leray–Lions type in Ω(s)=Ω\F(s), s=1,2,, where Ω is a domain in Rn (n3), F(s) is a closed set located in the neighborhood of a (n1)-dimensional manifold Γ lying inside Ω. We study the asymptotic behavior of u(s) as s, when the set F(s) tends to Γ.

Nous étudions le problème de Neumann pour un opérateur élliptique de type Leray–Lions dans un domaine Ω(s)=Ω\F(s), s=1,2,, où Ω est un ouvert dans Rn (n3), F(s) est un ensemble fermé situé au voisinage d'une variété differentiable Γ de dimension (n1) à l'intérieur de Ω. Nous étudions the comportement asymptotique de u(s) quand F(s) converge vers Γ dans un sens approprié.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.02.011

Mamadou Sango 1

1 Department of Mathematics and Applied Mathematics, University of Pretoria/Mamelodi Campus, Pretoria 0002, South Africa
@article{CRMATH_2006__342_8_563_0,
     author = {Mamadou Sango},
     title = {Neumann problem for a quasilinear elliptic equation in a varying domain},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {563--568},
     publisher = {Elsevier},
     volume = {342},
     number = {8},
     year = {2006},
     doi = {10.1016/j.crma.2006.02.011},
     language = {en},
}
TY  - JOUR
AU  - Mamadou Sango
TI  - Neumann problem for a quasilinear elliptic equation in a varying domain
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 563
EP  - 568
VL  - 342
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2006.02.011
LA  - en
ID  - CRMATH_2006__342_8_563_0
ER  - 
%0 Journal Article
%A Mamadou Sango
%T Neumann problem for a quasilinear elliptic equation in a varying domain
%J Comptes Rendus. Mathématique
%D 2006
%P 563-568
%V 342
%N 8
%I Elsevier
%R 10.1016/j.crma.2006.02.011
%G en
%F CRMATH_2006__342_8_563_0
Mamadou Sango. Neumann problem for a quasilinear elliptic equation in a varying domain. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 563-568. doi : 10.1016/j.crma.2006.02.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.011/

[1] L. Boccardo; F. Murat Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., Volume 19 (1992) no. 6, pp. 581-597

[2] D. Cioranescu; S.J. Paulin Homogenization in open sets with holes, J. Math. Anal. Appl., Volume 71 (1979) no. 2, pp. 590-607

[3] A. Damlamian Le problème de la passoire de Neumann, Rend. Sem. Mat. Univ. Politec. Torino, Volume 43 (1985/86) no. 3, pp. 427-450

[4] A. Damlamian; P. Donato Which sequences of holes are admissible for periodic homogenization with Neumann boundary conditions, A tribute to J.L. Lions, ESAIM Control Optim. Calc. Var., Volume 8 (2002), pp. 555-585

[5] V.A. Marchenko; E.Ya. Khruslov Boundary Value Problems in Domains with a Fine-Grained Boundary, Naukova Dumka, Kiev, 1974 (in Russian)

[6] V.G. Mazya Sobolev Spaces, Springer-Verlag, New York, 1985

[7] F. Murat The Neumann sieve, Isola d'Elba, 1983 (Res. Notes in Math.), Volume vol. 127, Pitman, Boston, MA (1985), pp. 24-32

[8] O.A. Oleinik; A.S. Shamaev; G.A. Yosifian Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992

[9] E. Sanchez-Palencia Boundary value problems in domains containing perforated walls, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. III, Paris, 1980/1981, Res. Notes in Math., vol. 70, Pitman, Boston, MA, London, 1982, pp. 309-325

Cited by Sources:

Comments - Policy