Comptes Rendus
Algebra
A Note on the Grothendieck ring of the symmetric group
Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 533-538.

Let p be a prime number and let n be a non-zero natural number. We compute the descending Loewy series of the algebra Rn/pRn, where Rn denotes the ring of virtual ordinary characters of the symmetric group Sn.

Soit p un nombre premier et soit n un entier naturel non nul. Nous calculons la série de Loewy descendante de l'algèbre Rn/pRn, où Rn désigne l'anneau des caractères virtuels ordinaires du groupe symétrique Sn.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.02.028

Cédric Bonnafé 1

1 Laboratoire de mathématiques de Besançon, (CNRS – UMR 6623), université de Franche-Comté, 16, route de Gray, 25030 Besançon cedex, France
@article{CRMATH_2006__342_8_533_0,
     author = {C\'edric Bonnaf\'e},
     title = {A {Note} on the {Grothendieck} ring of the symmetric group},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {533--538},
     publisher = {Elsevier},
     volume = {342},
     number = {8},
     year = {2006},
     doi = {10.1016/j.crma.2006.02.028},
     language = {en},
}
TY  - JOUR
AU  - Cédric Bonnafé
TI  - A Note on the Grothendieck ring of the symmetric group
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 533
EP  - 538
VL  - 342
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2006.02.028
LA  - en
ID  - CRMATH_2006__342_8_533_0
ER  - 
%0 Journal Article
%A Cédric Bonnafé
%T A Note on the Grothendieck ring of the symmetric group
%J Comptes Rendus. Mathématique
%D 2006
%P 533-538
%V 342
%N 8
%I Elsevier
%R 10.1016/j.crma.2006.02.028
%G en
%F CRMATH_2006__342_8_533_0
Cédric Bonnafé. A Note on the Grothendieck ring of the symmetric group. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 533-538. doi : 10.1016/j.crma.2006.02.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.028/

[1] C.W. Curtis; I. Reiner Methods of Representation Theory, vol. I, With Applications to Finite Groups and Orders, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1990 (Reprint of the 1981 original)

[2] M. Geck; G. Pfeiffer Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, London Math. Soc. Monogr. (N.S.), vol. 21, The Clarendon Press, Oxford University Press, New York, 2000

Cited by Sources:

Comments - Policy