Let p be a prime number and let n be a non-zero natural number. We compute the descending Loewy series of the algebra , where denotes the ring of virtual ordinary characters of the symmetric group .
Soit p un nombre premier et soit n un entier naturel non nul. Nous calculons la série de Loewy descendante de l'algèbre , où désigne l'anneau des caractères virtuels ordinaires du groupe symétrique .
Accepted:
Published online:
Cédric Bonnafé 1
@article{CRMATH_2006__342_8_533_0, author = {C\'edric Bonnaf\'e}, title = {A {Note} on the {Grothendieck} ring of the symmetric group}, journal = {Comptes Rendus. Math\'ematique}, pages = {533--538}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.02.028}, language = {en}, }
Cédric Bonnafé. A Note on the Grothendieck ring of the symmetric group. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 533-538. doi : 10.1016/j.crma.2006.02.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.028/
[1] Methods of Representation Theory, vol. I, With Applications to Finite Groups and Orders, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1990 (Reprint of the 1981 original)
[2] Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, London Math. Soc. Monogr. (N.S.), vol. 21, The Clarendon Press, Oxford University Press, New York, 2000
Cited by Sources:
Comments - Policy