[Les solutions globales de l'équation de Boltzmann dans la géometrie uni-dimensionnelle]
For the Boltzmann equation, the setting of a narrow shock tube implies that solutions
Dans un domaine qui représente un tube à choc, les solutions
Accepté le :
Publié le :
Andrei Biryuk 1 ; Walter Craig 1 ; Vladislav Panferov 1
@article{CRMATH_2006__342_11_843_0, author = {Andrei Biryuk and Walter Craig and Vladislav Panferov}, title = {Strong solutions of the {Boltzmann} equation in one spatial dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {843--848}, publisher = {Elsevier}, volume = {342}, number = {11}, year = {2006}, doi = {10.1016/j.crma.2006.04.005}, language = {en}, }
TY - JOUR AU - Andrei Biryuk AU - Walter Craig AU - Vladislav Panferov TI - Strong solutions of the Boltzmann equation in one spatial dimension JO - Comptes Rendus. Mathématique PY - 2006 SP - 843 EP - 848 VL - 342 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2006.04.005 LA - en ID - CRMATH_2006__342_11_843_0 ER -
Andrei Biryuk; Walter Craig; Vladislav Panferov. Strong solutions of the Boltzmann equation in one spatial dimension. Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 843-848. doi : 10.1016/j.crma.2006.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.005/
[1] Existence theorems for certain kinetic equations and large data, Arch. Rational Mech. Anal., Volume 103 (1988), pp. 139-149
[2] L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen, Sitzungberichte der kaiserlichen Akademie der Wissenschaften in Wien, Klasse IIa (1872)
[3] Solutions globales bornées pour les modèles discrets de l'équation de Boltzmann, en dimension 1 d'espace, Journées “Équations aux dérivées partielles” (Saint Jean de Monts, 1987), Exp. No. XVI, École Polytech., Palaiseau, 1987, pp. 1-10
[4] A remarkable estimate for the solutions of the Boltzmann equation, Appl. Math. Lett., Volume 5 (1992) no. 5, pp. 59-62
[5] Weak solutions of the Boltzmann equation energy conservation, Appl. Math. Lett., Volume 8 (1995) no. 2, pp. 53-59 Errata: Appl. Math. Lett. 8 (5) (1995) 95–99
[6] Global weak solutions of the Boltzmann equation, J. Statist. Phys., Volume 118 (2005), pp. 333-342
[7] Global weak solutions of the Boltzmann equation in a slab with diffusive boundary conditions, Arch. Rational Mech. Anal., Volume 134 (1996), pp. 1-16
[8] The Mathematical Theory of Dilute Gases, Appl. Math. Sci., vol. 106, Springer-Verlag, New York, 1994
[9] On the Cauchy problem for the Boltzmann equation: Global existence and weak stability, Ann. Math., Volume 130 (1989), pp. 321-366
[10] Global solutions of Boltzmann's equation and the entropy inequality, Arch. Rational Mech. Anal., Volume 114 (1991), pp. 47-55
[11] Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ., Volume 34 (1994), pp. 391-427 (429–461)
[12] On the dynamical theory of gases, Philos. Trans. Roy. Soc. London, Volume 157 (1867), pp. 49-88
[13] Oscillations and asymptotic behavior for two semilinear hyperbolic systems (S.-N. Chow; J.K. Hale, eds.), NATO ASI Series, vol. 37, Springer, Berlin, 1987, pp. 341-356
[14] A review of mathematical topics in collisional kinetic theory (S. Friedlander; D. Serre, eds.), Handbook of Mathematical Fluid Dynamics, vol. 1, North-Holland, Amsterdam, 2002, pp. 71-305
- Hypocoercivity for perturbation theory and perturbation of hypocoercivity for confined Boltzmann-type collisional equations, S
MA Journal, Volume 80 (2023) no. 1, pp. 27-83 | DOI:10.1007/s40324-021-00281-y | Zbl:1537.35269 - Virial estimates for hard spheres, Nonlinear dispersive waves and fluids. AMS special sessions on spectral calculus and quasilinear partial differential equations, and PDE analysis on fluid flows, Atlanta, GA, USA, January 5–7, 2017, Providence, RI: American Mathematical Society (AMS), 2019, pp. 35-52 | DOI:10.1090/conm/725/14554 | Zbl:1423.35291
- Hydrodynamic limit of granular gases to pressureless Euler in dimension 1, Quarterly of Applied Mathematics, Volume 75 (2017) no. 1, pp. 155-179 | DOI:10.1090/qam/1442 | Zbl:1354.35076
- Linearized BGK Model of Heat Transfer, Computing Qualitatively Correct Approximations of Balance Laws, Volume 2 (2013), p. 269 | DOI:10.1007/978-88-470-2892-0_14
- Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic Related Models, Volume 5 (2012) no. 2, p. 283 | DOI:10.3934/krm.2012.5.283
- Global weak solutions and uniform
-stability of the Boltzmann-Enskog equation, Journal of Differential Equations, Volume 251 (2011) no. 1, pp. 1-25 | DOI:10.1016/j.jde.2011.03.021 | Zbl:1217.35132 - Hydrodynamic limits: Some improvements of the relative entropy method, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 26 (2009) no. 3, pp. 705-744 | DOI:10.1016/j.anihpc.2008.01.001 | Zbl:1170.35500
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique