For the Boltzmann equation, the setting of a narrow shock tube implies that solutions depend upon , however they have one-dimensional spatial dependence. This Note discusses the case in which solutions are periodic in x, with controlled total energy and entropy, and such that the macroscopic density determined by the initial data is bounded. Our principal result is that the macroscopic density then remains bounded at all subsequent times, that is, this data gives rise to strong solutions which exist globally in time. Through a weak/strong uniqueness principle, these solutions are unique among the class of dissipative solutions. Additionally, we show that the flow of the Boltzmann equation propagates the moments in and derivatives in both and of the solution . Our main theorems are valid for Boltzmann collision kernels which are bounded, and which have a relative velocity cutoff. The proofs depend upon a new averaging property of the collision operator and integral inequalities based in turn on entropy and on the Bony functional.
Dans un domaine qui représente un tube à choc, les solutions de l'équation de Boltzmann dépendent de mais elles ne dépendent que de . Dans cette Note, on considère le cas de solutions périodiques en , dont la densité macroscopique initiale est finie, et l'énergie et l'entropie totales sont bornées par une certaine constante C. Le résultat principal est que la densité macroscopique de la solution reste bornée pour tout temps , c'est-à-dire, les conditions initiales donnent lieu à des solutions fortes qui existent globalement en temps. Le résultat implique l'unicité de nos solutions dans la classe de solutions dissipatives faibles. Ces solutions conservent les propriétés de régularité en x et en v, et les moments finis en v. Les théorèmes principaux sont valables pour des noyaux de collision de Boltzmann bornés, et avec une troncature de vitesse relative. Les démonstrations dépendent d'une propriété nouvelle de moyennisation de l'opérateur de collision, et de deux inégalités intégrales basées sur l'entropie et sur la fonctionnelle de Bony.
Accepted:
Published online:
Andrei Biryuk 1; Walter Craig 1; Vladislav Panferov 1
@article{CRMATH_2006__342_11_843_0, author = {Andrei Biryuk and Walter Craig and Vladislav Panferov}, title = {Strong solutions of the {Boltzmann} equation in one spatial dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {843--848}, publisher = {Elsevier}, volume = {342}, number = {11}, year = {2006}, doi = {10.1016/j.crma.2006.04.005}, language = {en}, }
TY - JOUR AU - Andrei Biryuk AU - Walter Craig AU - Vladislav Panferov TI - Strong solutions of the Boltzmann equation in one spatial dimension JO - Comptes Rendus. Mathématique PY - 2006 SP - 843 EP - 848 VL - 342 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2006.04.005 LA - en ID - CRMATH_2006__342_11_843_0 ER -
Andrei Biryuk; Walter Craig; Vladislav Panferov. Strong solutions of the Boltzmann equation in one spatial dimension. Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 843-848. doi : 10.1016/j.crma.2006.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.005/
[1] Existence theorems for certain kinetic equations and large data, Arch. Rational Mech. Anal., Volume 103 (1988), pp. 139-149
[2] L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen, Sitzungberichte der kaiserlichen Akademie der Wissenschaften in Wien, Klasse IIa (1872)
[3] Solutions globales bornées pour les modèles discrets de l'équation de Boltzmann, en dimension 1 d'espace, Journées “Équations aux dérivées partielles” (Saint Jean de Monts, 1987), Exp. No. XVI, École Polytech., Palaiseau, 1987, pp. 1-10
[4] A remarkable estimate for the solutions of the Boltzmann equation, Appl. Math. Lett., Volume 5 (1992) no. 5, pp. 59-62
[5] Weak solutions of the Boltzmann equation energy conservation, Appl. Math. Lett., Volume 8 (1995) no. 2, pp. 53-59 Errata: Appl. Math. Lett. 8 (5) (1995) 95–99
[6] Global weak solutions of the Boltzmann equation, J. Statist. Phys., Volume 118 (2005), pp. 333-342
[7] Global weak solutions of the Boltzmann equation in a slab with diffusive boundary conditions, Arch. Rational Mech. Anal., Volume 134 (1996), pp. 1-16
[8] The Mathematical Theory of Dilute Gases, Appl. Math. Sci., vol. 106, Springer-Verlag, New York, 1994
[9] On the Cauchy problem for the Boltzmann equation: Global existence and weak stability, Ann. Math., Volume 130 (1989), pp. 321-366
[10] Global solutions of Boltzmann's equation and the entropy inequality, Arch. Rational Mech. Anal., Volume 114 (1991), pp. 47-55
[11] Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ., Volume 34 (1994), pp. 391-427 (429–461)
[12] On the dynamical theory of gases, Philos. Trans. Roy. Soc. London, Volume 157 (1867), pp. 49-88
[13] Oscillations and asymptotic behavior for two semilinear hyperbolic systems (S.-N. Chow; J.K. Hale, eds.), NATO ASI Series, vol. 37, Springer, Berlin, 1987, pp. 341-356
[14] A review of mathematical topics in collisional kinetic theory (S. Friedlander; D. Serre, eds.), Handbook of Mathematical Fluid Dynamics, vol. 1, North-Holland, Amsterdam, 2002, pp. 71-305
Cited by Sources:
Comments - Policy