[Les solutions globales de l'équation de Boltzmann dans la géometrie uni-dimensionnelle]
Dans un domaine qui représente un tube à choc, les solutions
For the Boltzmann equation, the setting of a narrow shock tube implies that solutions
Accepté le :
Publié le :
Andrei Biryuk 1 ; Walter Craig 1 ; Vladislav Panferov 1
@article{CRMATH_2006__342_11_843_0, author = {Andrei Biryuk and Walter Craig and Vladislav Panferov}, title = {Strong solutions of the {Boltzmann} equation in one spatial dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {843--848}, publisher = {Elsevier}, volume = {342}, number = {11}, year = {2006}, doi = {10.1016/j.crma.2006.04.005}, language = {en}, }
TY - JOUR AU - Andrei Biryuk AU - Walter Craig AU - Vladislav Panferov TI - Strong solutions of the Boltzmann equation in one spatial dimension JO - Comptes Rendus. Mathématique PY - 2006 SP - 843 EP - 848 VL - 342 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2006.04.005 LA - en ID - CRMATH_2006__342_11_843_0 ER -
Andrei Biryuk; Walter Craig; Vladislav Panferov. Strong solutions of the Boltzmann equation in one spatial dimension. Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 843-848. doi : 10.1016/j.crma.2006.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.005/
[1] Existence theorems for certain kinetic equations and large data, Arch. Rational Mech. Anal., Volume 103 (1988), pp. 139-149
[2] L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen, Sitzungberichte der kaiserlichen Akademie der Wissenschaften in Wien, Klasse IIa (1872)
[3] Solutions globales bornées pour les modèles discrets de l'équation de Boltzmann, en dimension 1 d'espace, Journées “Équations aux dérivées partielles” (Saint Jean de Monts, 1987), Exp. No. XVI, École Polytech., Palaiseau, 1987, pp. 1-10
[4] A remarkable estimate for the solutions of the Boltzmann equation, Appl. Math. Lett., Volume 5 (1992) no. 5, pp. 59-62
[5] Weak solutions of the Boltzmann equation energy conservation, Appl. Math. Lett., Volume 8 (1995) no. 2, pp. 53-59 Errata: Appl. Math. Lett. 8 (5) (1995) 95–99
[6] Global weak solutions of the Boltzmann equation, J. Statist. Phys., Volume 118 (2005), pp. 333-342
[7] Global weak solutions of the Boltzmann equation in a slab with diffusive boundary conditions, Arch. Rational Mech. Anal., Volume 134 (1996), pp. 1-16
[8] The Mathematical Theory of Dilute Gases, Appl. Math. Sci., vol. 106, Springer-Verlag, New York, 1994
[9] On the Cauchy problem for the Boltzmann equation: Global existence and weak stability, Ann. Math., Volume 130 (1989), pp. 321-366
[10] Global solutions of Boltzmann's equation and the entropy inequality, Arch. Rational Mech. Anal., Volume 114 (1991), pp. 47-55
[11] Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ., Volume 34 (1994), pp. 391-427 (429–461)
[12] On the dynamical theory of gases, Philos. Trans. Roy. Soc. London, Volume 157 (1867), pp. 49-88
[13] Oscillations and asymptotic behavior for two semilinear hyperbolic systems (S.-N. Chow; J.K. Hale, eds.), NATO ASI Series, vol. 37, Springer, Berlin, 1987, pp. 341-356
[14] A review of mathematical topics in collisional kinetic theory (S. Friedlander; D. Serre, eds.), Handbook of Mathematical Fluid Dynamics, vol. 1, North-Holland, Amsterdam, 2002, pp. 71-305
- Hypocoercivity for perturbation theory and perturbation of hypocoercivity for confined Boltzmann-type collisional equations, SeMA Journal, Volume 80 (2023) no. 1, p. 27 | DOI:10.1007/s40324-021-00281-y
- Hydrodynamic limit of granular gases to pressureless Euler in dimension 1, Quarterly of Applied Mathematics, Volume 75 (2016) no. 1, p. 155 | DOI:10.1090/qam/1442
- Linearized BGK Model of Heat Transfer, Computing Qualitatively Correct Approximations of Balance Laws, Volume 2 (2013), p. 269 | DOI:10.1007/978-88-470-2892-0_14
- Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic Related Models, Volume 5 (2012) no. 2, p. 283 | DOI:10.3934/krm.2012.5.283
- Global weak solutions and uniform Lp-stability of the Boltzmann–Enskog equation, Journal of Differential Equations, Volume 251 (2011) no. 1, p. 1 | DOI:10.1016/j.jde.2011.03.021
- Hydrodynamic limits: some improvements of the relative entropy method, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 3, p. 705 | DOI:10.1016/j.anihpc.2008.01.001
Cité par 6 documents. Sources : Crossref
Commentaires - Politique