Many sufficient conditions of asymptotic normality of the normalized quadratic form have been proposed since 1958. The less restrictive was given in the paper of L. Giraitis and D. Surgailis (1990). Using a linear operator approach, it is possible to produce an even less restrictive sufficient condition on the couple of functions .
Des conditions suffisantes de normalité asymptotique de la forme quadratique standardisée se sont succédées depuis 1958. La moins restrictive fût proposée par L. Giraitis et D. Surgailis en 1990. En abordant le problème sous l'angle des opérateurs linéaires, il est possible de produire une condition suffisante encore moins restrictive sur le couple de fonctions .
Accepted:
Published online:
Valentin Solev 1; Léo Gerville-Reache 2
@article{CRMATH_2006__342_12_971_0, author = {Valentin Solev and L\'eo Gerville-Reache}, title = {A sufficient condition for asymptotic normality of the normalized quadratic form $ {\Psi }_{n}(f,g)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {971--975}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.04.022}, language = {en}, }
TY - JOUR AU - Valentin Solev AU - Léo Gerville-Reache TI - A sufficient condition for asymptotic normality of the normalized quadratic form $ {\Psi }_{n}(f,g)$ JO - Comptes Rendus. Mathématique PY - 2006 SP - 971 EP - 975 VL - 342 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2006.04.022 LA - en ID - CRMATH_2006__342_12_971_0 ER -
%0 Journal Article %A Valentin Solev %A Léo Gerville-Reache %T A sufficient condition for asymptotic normality of the normalized quadratic form $ {\Psi }_{n}(f,g)$ %J Comptes Rendus. Mathématique %D 2006 %P 971-975 %V 342 %N 12 %I Elsevier %R 10.1016/j.crma.2006.04.022 %G en %F CRMATH_2006__342_12_971_0
Valentin Solev; Léo Gerville-Reache. A sufficient condition for asymptotic normality of the normalized quadratic form $ {\Psi }_{n}(f,g)$. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 971-975. doi : 10.1016/j.crma.2006.04.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.022/
[1] On Bilinear Forms in Gaussian Random Variables and Toeplitz Matrices, University of California Press, Berkeley and Los Angeles, 1958
[2] On Toeplitz type quadratic forms in Gaussian stationary process, Probab. Theory Related Fields, Volume 100 (1994), pp. 395-406
[3] M.S. Ginovyan, A.A. Saakian, On central limit theorem for Toeplitz quadratic forms in Gaussian stationary sequences, Theory Probab. Appl. (2005) submitted for publication
[4] A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate, Probab. Theory Related Fields, Volume 86 (1990), pp. 87-104
[5] Toeplitz Form and Their Applications, University of California Press, Berkeley and Los Angeles, 1958
[6] On estimation of spectral density of stationary Gaussian process, transform, Theory Probab. Appl., Volume 8 (1963), pp. 391-430
[7] Gaussian Processes, Mir, Moscow, 1974
[8] Asymptotic behavior of eigenvalues of Toeplitz form, transform, J. Math. Mech., Volume 11 (1962), pp. 941-950
Cited by Sources:
Comments - Policy