[Sur la longueur des quasigéodésiques simples fermées sur des surfaces convexes]
On etablit, pour des surfaces convexes arbitraires, des inégalités impliquant le diamètre, l'aire et les longueurs des (quasi)géodésiques simples fermées.
We establish, for general convex surfaces, inequalities involving the diameter, the area and the lengths of simple closed (quasi)geodesics.
Accepté le :
Publié le :
Jin-ichi Itoh 1 ; Costin Vîlcu 2
@article{CRMATH_2006__343_4_259_0, author = {Jin-ichi Itoh and Costin V{\^\i}lcu}, title = {On the length of simple closed quasigeodesics on convex surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {259--264}, publisher = {Elsevier}, volume = {343}, number = {4}, year = {2006}, doi = {10.1016/j.crma.2006.06.020}, language = {en}, }
Jin-ichi Itoh; Costin Vîlcu. On the length of simple closed quasigeodesics on convex surfaces. Comptes Rendus. Mathématique, Volume 343 (2006) no. 4, pp. 259-264. doi : 10.1016/j.crma.2006.06.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.020/
[1] Die innere Geometrie der konvexen Flächen, Akademie-Verlag, Berlin, 1955
[2] Geometric Inequalities, Springer-Verlag, Berlin, 1988
[3] Convex Surfaces, Interscience Publishers, New York, 1958
[4] Simple closed geodesics on convex surfaces, J. Differential Geom., Volume 36 (1992), pp. 517-549
[5] A typical convex surface contains no closed geodesic, J. Reine Angew. Math., Volume 416 (1991), pp. 195-205
[6] K. Ieiri, J. Itoh, C. Vîlcu, Quasigeodesics and farthest points on convex surfaces, preprint
[7] J. Itoh, C. Vîlcu, Geodesic characterizations of isosceles tetrahedra, manuscript
[8] Riemannian Geometry, de Gruyter, Berlin, 1982
[9] The length of the shortest closed geodesic on a 2-dimensional sphere, IMRN, Volume 23 (2002), pp. 1211-1222
[10] Quasigeodesics on convex surfaces, Mat. Sb., Volume 25 (1949), pp. 275-307
[11] The length of a shortest closed geodesic on a two-dimensional sphere and coverings by metric balls, Geom. Dedicata, Volume 110 (2005), pp. 143-157
[12] Filling radius and short closed geodesics of the 2-sphere, Bull. Soc. Math. France, Volume 132 (2004), pp. 105-136
[13] On levels of the distance function from the boundary of convex domains, Hokkaido Math. J., Volume XXI (1992), pp. 87-97
[14] Computation of the length of a closed geodesic on a convex surface, Dokl. Akad. Nauk SSSR, Volume 124 (1959), pp. 282-284 (in Russian)
Cité par Sources :
Commentaires - Politique