Comptes Rendus
Geometry
On the length of simple closed quasigeodesics on convex surfaces
[Sur la longueur des quasigéodésiques simples fermées sur des surfaces convexes]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 4, pp. 259-264.

On etablit, pour des surfaces convexes arbitraires, des inégalités impliquant le diamètre, l'aire et les longueurs des (quasi)géodésiques simples fermées.

We establish, for general convex surfaces, inequalities involving the diameter, the area and the lengths of simple closed (quasi)geodesics.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.06.020

Jin-ichi Itoh 1 ; Costin Vîlcu 2

1 Faculty of Education, Kumamoto University, Kumamoto 860-8555, Japan
2 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, Bucharest 014700, Romania
@article{CRMATH_2006__343_4_259_0,
     author = {Jin-ichi Itoh and Costin V{\^\i}lcu},
     title = {On the length of simple closed quasigeodesics on convex surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {259--264},
     publisher = {Elsevier},
     volume = {343},
     number = {4},
     year = {2006},
     doi = {10.1016/j.crma.2006.06.020},
     language = {en},
}
TY  - JOUR
AU  - Jin-ichi Itoh
AU  - Costin Vîlcu
TI  - On the length of simple closed quasigeodesics on convex surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 259
EP  - 264
VL  - 343
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2006.06.020
LA  - en
ID  - CRMATH_2006__343_4_259_0
ER  - 
%0 Journal Article
%A Jin-ichi Itoh
%A Costin Vîlcu
%T On the length of simple closed quasigeodesics on convex surfaces
%J Comptes Rendus. Mathématique
%D 2006
%P 259-264
%V 343
%N 4
%I Elsevier
%R 10.1016/j.crma.2006.06.020
%G en
%F CRMATH_2006__343_4_259_0
Jin-ichi Itoh; Costin Vîlcu. On the length of simple closed quasigeodesics on convex surfaces. Comptes Rendus. Mathématique, Volume 343 (2006) no. 4, pp. 259-264. doi : 10.1016/j.crma.2006.06.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.020/

[1] A.D. Alexandrov Die innere Geometrie der konvexen Flächen, Akademie-Verlag, Berlin, 1955

[2] Yu.D. Burago; V.A. Zalgaller Geometric Inequalities, Springer-Verlag, Berlin, 1988

[3] H. Busemann Convex Surfaces, Interscience Publishers, New York, 1958

[4] E. Calabi; J. Cao Simple closed geodesics on convex surfaces, J. Differential Geom., Volume 36 (1992), pp. 517-549

[5] P. Gruber A typical convex surface contains no closed geodesic, J. Reine Angew. Math., Volume 416 (1991), pp. 195-205

[6] K. Ieiri, J. Itoh, C. Vîlcu, Quasigeodesics and farthest points on convex surfaces, preprint

[7] J. Itoh, C. Vîlcu, Geodesic characterizations of isosceles tetrahedra, manuscript

[8] W. Klingenberg Riemannian Geometry, de Gruyter, Berlin, 1982

[9] A. Nabutovsky; R. Rotman The length of the shortest closed geodesic on a 2-dimensional sphere, IMRN, Volume 23 (2002), pp. 1211-1222

[10] A.V. Pogorelov Quasigeodesics on convex surfaces, Mat. Sb., Volume 25 (1949), pp. 275-307

[11] R. Rotman The length of a shortest closed geodesic on a two-dimensional sphere and coverings by metric balls, Geom. Dedicata, Volume 110 (2005), pp. 143-157

[12] S. Sabourau Filling radius and short closed geodesics of the 2-sphere, Bull. Soc. Math. France, Volume 132 (2004), pp. 105-136

[13] T. Sakai On levels of the distance function from the boundary of convex domains, Hokkaido Math. J., Volume XXI (1992), pp. 87-97

[14] V.A. Toponogov Computation of the length of a closed geodesic on a convex surface, Dokl. Akad. Nauk SSSR, Volume 124 (1959), pp. 282-284 (in Russian)

Cité par Sources :

Commentaires - Politique