Comptes Rendus
Partial Differential Equations
Bubbling solutions for an anisotropic Emden–Fowler equation
[Solutions à bulles pour une équation de Emden–Fowler anisotropique]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 4, pp. 253-258.

On considère l'équation de Emden–Fowler anisotropique : (a(x)u)+ε2a(x)eu=0 dans Ω, u=0 sur ∂ΩΩR2 est un domaine régulier borné et a est une fonction régulière strictement positive. Nous étudions l'effet du coefficient anisotropique a(x) sur l'existence des solutions à bulles. Nous montrons que pour un maximum local strict de la fonction a, il existe des solutions avec un nombre arbitraire de bulles. Par conséquent, la quantité

Tε=ε2Ωa(x)eudx
peut approcher +∞ quand ε0. Ces résultats montrent une différence frappante avec le cas isotropique (a(x)constante).

We consider the anisotropic Emden–Fowler equation: (a(x)u)+ε2a(x)eu=0 in Ω, u=0 on ∂Ω where ΩR2 is a smooth bounded domain and a(x) is a positive, smooth function. We investigate the effect of anisotropic coefficient a(x) on the existence of bubbling solutions. We show that at given strict local maximum points of a, there exist solutions with arbitrarily many bubbles. As a consequence, the quantity

Tε=ε2Ωa(x)eudx
can approach to +∞ as ε0. These results show a striking difference with the isotropic case (a(x)constant).

Reçu le :
Publié le :
DOI : 10.1016/j.crma.2006.05.017
Juncheng Wei 1 ; Dong Ye 2 ; Feng Zhou 3

1 Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
2 Département de Mathématiques, Université de Cergy-Pontoise, 95302 Cergy-Pontoise, France
3 Department of Mathematics, East China Normal University, Shanghai 200062, China
@article{CRMATH_2006__343_4_253_0,
     author = {Juncheng Wei and Dong Ye and Feng Zhou},
     title = {Bubbling solutions for an anisotropic {Emden{\textendash}Fowler} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {253--258},
     publisher = {Elsevier},
     volume = {343},
     number = {4},
     year = {2006},
     doi = {10.1016/j.crma.2006.05.017},
     language = {en},
}
TY  - JOUR
AU  - Juncheng Wei
AU  - Dong Ye
AU  - Feng Zhou
TI  - Bubbling solutions for an anisotropic Emden–Fowler equation
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 253
EP  - 258
VL  - 343
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2006.05.017
LA  - en
ID  - CRMATH_2006__343_4_253_0
ER  - 
%0 Journal Article
%A Juncheng Wei
%A Dong Ye
%A Feng Zhou
%T Bubbling solutions for an anisotropic Emden–Fowler equation
%J Comptes Rendus. Mathématique
%D 2006
%P 253-258
%V 343
%N 4
%I Elsevier
%R 10.1016/j.crma.2006.05.017
%G en
%F CRMATH_2006__343_4_253_0
Juncheng Wei; Dong Ye; Feng Zhou. Bubbling solutions for an anisotropic Emden–Fowler equation. Comptes Rendus. Mathématique, Volume 343 (2006) no. 4, pp. 253-258. doi : 10.1016/j.crma.2006.05.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.017/

[1] H. Brezis; F. Merle Uniform estimates and blow-up behavior for solutions of Δu=V(x)eu in two dimensions, Comm. Partial Differential Equations, Volume 16 (1991) no. 8–9, pp. 1223-1253

[2] S. Baraket; F. Pacard Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations, Volume 6 (1998) no. 1, pp. 1-38

[3] S. Chanilo; Y.Y. Li Continuity of solutions of uniformly elliptic equations in R2, Manuscripta Math., Volume 77 (1992), pp. 415-433

[4] X. Chen Remarks on the existence of branch bubbles on the blowup-analysis of equation Δu=e2u in dimension two, Comm. Anal. Geom., Volume 7 (1999), pp. 295-302

[5] M. Del Pino; M. Kowalczyk; M. Musso Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations, Volume 24 (2005), pp. 47-81

[6] M. Del Pino; P. Felmer Semiclassical states for nonlinear Schrödinger equations, J. Funct. Anal., Volume 149 (1997), pp. 245-265

[7] P. Esposito; M. Grossi; A. Pistoia On the existence of blowing-up solutions for a mean field equation, Ann. I. H. Poincaré Anal. Nonlinéaire, Volume 22 (2005), pp. 227-257

[8] L. Ma; J. Wei Convergence for a Liouville equation, Comm. Math. Helv., Volume 76 (2001), pp. 506-514

[9] N. Mizoguchi; T. Suzuki Equations of gas combustion: S-shaped bifurcation and mushrooms, J. Differential Equations, Volume 134 (1997), pp. 183-215

[10] K. Nagasaki; Y. Suzuki Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal., Volume 3 (1990), pp. 173-188

[11] J. Wei, D. Ye, F. Zhou, Bubbling solutions for an anisotropic Emden–Fowler equation, Calc. Var. Partial Differential Equations (2006), in press

[12] D. Ye Une remarque sur le comportement asymptotique des solutions de Δu=λf(u), C. R. Acad. Sci. Paris I, Volume 325 (1997), pp. 1279-1282

[13] D. Ye; F. Zhou A generalized two dimensional Emden–Fowler equation with exponential nonlinearity, Calc. Var. Partial Differential Equations, Volume 13 (2001), pp. 141-158

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

On the Brezis–Nirenberg problem on S3, and a conjecture of Bandle–Benguria

Wenyi Chen; Juncheng Wei

C. R. Math (2005)