We consider the anisotropic Emden–Fowler equation: in Ω, on ∂Ω where is a smooth bounded domain and is a positive, smooth function. We investigate the effect of anisotropic coefficient on the existence of bubbling solutions. We show that at given strict local maximum points of a, there exist solutions with arbitrarily many bubbles. As a consequence, the quantity
On considère l'équation de Emden–Fowler anisotropique : dans Ω, sur ∂Ω où est un domaine régulier borné et a est une fonction régulière strictement positive. Nous étudions l'effet du coefficient anisotropique sur l'existence des solutions à bulles. Nous montrons que pour un maximum local strict de la fonction a, il existe des solutions avec un nombre arbitraire de bulles. Par conséquent, la quantité
Published online:
Juncheng Wei 1; Dong Ye 2; Feng Zhou 3
@article{CRMATH_2006__343_4_253_0, author = {Juncheng Wei and Dong Ye and Feng Zhou}, title = {Bubbling solutions for an anisotropic {Emden{\textendash}Fowler} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {253--258}, publisher = {Elsevier}, volume = {343}, number = {4}, year = {2006}, doi = {10.1016/j.crma.2006.05.017}, language = {en}, }
Juncheng Wei; Dong Ye; Feng Zhou. Bubbling solutions for an anisotropic Emden–Fowler equation. Comptes Rendus. Mathématique, Volume 343 (2006) no. 4, pp. 253-258. doi : 10.1016/j.crma.2006.05.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.017/
[1] Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations, Volume 16 (1991) no. 8–9, pp. 1223-1253
[2] Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations, Volume 6 (1998) no. 1, pp. 1-38
[3] Continuity of solutions of uniformly elliptic equations in , Manuscripta Math., Volume 77 (1992), pp. 415-433
[4] Remarks on the existence of branch bubbles on the blowup-analysis of equation in dimension two, Comm. Anal. Geom., Volume 7 (1999), pp. 295-302
[5] Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations, Volume 24 (2005), pp. 47-81
[6] Semiclassical states for nonlinear Schrödinger equations, J. Funct. Anal., Volume 149 (1997), pp. 245-265
[7] On the existence of blowing-up solutions for a mean field equation, Ann. I. H. Poincaré Anal. Nonlinéaire, Volume 22 (2005), pp. 227-257
[8] Convergence for a Liouville equation, Comm. Math. Helv., Volume 76 (2001), pp. 506-514
[9] Equations of gas combustion: S-shaped bifurcation and mushrooms, J. Differential Equations, Volume 134 (1997), pp. 183-215
[10] Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal., Volume 3 (1990), pp. 173-188
[11] J. Wei, D. Ye, F. Zhou, Bubbling solutions for an anisotropic Emden–Fowler equation, Calc. Var. Partial Differential Equations (2006), in press
[12] Une remarque sur le comportement asymptotique des solutions de , C. R. Acad. Sci. Paris I, Volume 325 (1997), pp. 1279-1282
[13] A generalized two dimensional Emden–Fowler equation with exponential nonlinearity, Calc. Var. Partial Differential Equations, Volume 13 (2001), pp. 141-158
Cited by Sources:
Comments - Policy