Comptes Rendus
Probability Theory
Fellerian pants
[Pantalon de Feller]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 333-338.

Nous definissons un espace de Banach E associé a l'espace des lacets tel qu'un pantalon aléatoire réalise une application continue de EˆεE dans E. Nous sommes motivés par l'un des axiomes de G. Segal de la théorie des champs conformes. Les détails seront écrits dans un prochain article.

Given a manifold M we define a Banach space E associated with the loop space L(M) of M in such a way that the random pants realize a continuous map from the injective tensor product EˆεE into E. Our research is motivated by one of the axioms of conformal field theory of G. Segal. Full details will be presented in a forthcoming article.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.07.003

Zdzisław Brzeźniak 1 ; Remi Léandre 2

1 Department of Mathematics, The University of York, Heslington, York YO10 5DD, UK
2 Département de mathématiques, Université de Bourgogne, 21000 Dijon, France
@article{CRMATH_2006__343_5_333_0,
     author = {Zdzis{\l}aw Brze\'zniak and Remi L\'eandre},
     title = {Fellerian pants},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {333--338},
     publisher = {Elsevier},
     volume = {343},
     number = {5},
     year = {2006},
     doi = {10.1016/j.crma.2006.07.003},
     language = {en},
}
TY  - JOUR
AU  - Zdzisław Brzeźniak
AU  - Remi Léandre
TI  - Fellerian pants
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 333
EP  - 338
VL  - 343
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2006.07.003
LA  - en
ID  - CRMATH_2006__343_5_333_0
ER  - 
%0 Journal Article
%A Zdzisław Brzeźniak
%A Remi Léandre
%T Fellerian pants
%J Comptes Rendus. Mathématique
%D 2006
%P 333-338
%V 343
%N 5
%I Elsevier
%R 10.1016/j.crma.2006.07.003
%G en
%F CRMATH_2006__343_5_333_0
Zdzisław Brzeźniak; Remi Léandre. Fellerian pants. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 333-338. doi : 10.1016/j.crma.2006.07.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.07.003/

[1] H. Airault, P. Malliavin, Quasi-sure analysis, Publication of University Paris VI, 1990

[2] H. Airault, P. Malliavin, Analysis over loop groups, Publication of University Paris VI, 1991

[3] Ya.L. Belopolskaya; Yu.L. Daletski Stochastic Equations and Differential Geometry, Mathematics and Its Applications, vol. 30, Kluwer Academic Publishers, Dordrecht, 1990

[4] J.-M. Bismut Large deviations and the Malliavin Calculus, Progress in Mathematics, vol. 45, Birkhäuser, Boston, 1984

[5] Z. Brzeźniak; K.D. Elworthy Stochastic differential equations on Banach manifolds; applications to diffusions on loop spaces, MFAT, Volume 6 (2000) no. 1, pp. 43-84 (a special volume dedicated to the memory of Professor Yuri Daletski)

[6] Z. Brzeźniak; R. Léandre Horizontal lift of an infinite dimensional diffusion, Potential Anal., Volume 12 (2000), pp. 249-280

[7] Z. Brzeźniak, R. Léandre, Stochastic pants over a Riemannian manifold, in preparation

[8] A. Carverhill Conditioning a lifted stochastic system in a product space, Ann. Probab., Volume 16 (1988) no. 4, pp. 1840-1853

[9] K.D. Elworthy Stochastic Differential Equations on Manifolds, London Math. Soc. Lecture Notes Ser., vol. 70, Cambridge University Press, 1982

[10] G. Felder; K. Gawȩdzki; A. Kupiainen Spectra of Wess–Zumino–Witten models with arbitrary simple groups, Comm. Math. Phys., Volume 117 (1988) no. 1, pp. 127-158

[11] K. Gawȩdzki, Conformal field theory, Séminaire Bourbaki, Vol. 1988/89; Astérisque No. 177–178, Exp. No. 704 (1989) 95–126

[12] Z.Y. Huang; J.G. Ren Quasi sure stochastic flows, Stochastics Stochastics Rep., Volume 33 (1990) no. 3–4, pp. 149-157

[13] H.H. Kuo Diffusion and Brownian Motion on infinite dimensional manifolds, Trans. Amer. Math. Soc., Volume 169 (1972), pp. 439-459

[14] R. Léandre Analysis over loop space and topology, Math. Notes, Volume 72 (2002), pp. 212-229

[15] R. Léandre Brownian surfaces with boundary and Deligne cohomology, Rep. Math. Phys., Volume 52 (2003), pp. 353-362

[16] R. Léandre Markov property and operads, Entropy, Volume 6 (2004), pp. 180-215

[17] R. Léandre Two examples of stochastic field theories, Osaka J. Math., Volume 42 (2005), pp. 353-365

[18] R. Léandre Brownian pants and Deligne cohomology, J. Math. Phys., Volume 46 (2005) no. 1–20, p. 033503

[19] R. Léandre, Galton–Watson tree and branching loops, in: I. Mladenov, A. Hirschfeld (Eds.), Geometry, Integrability and Quantization, Softek, 2005, pp. 267–283

[20] P. Malliavin Stochastic Analysis, Springer, Berlin, 1997

[21] P.A. Meyer Flot d'une équation différentielle stochastique (J. Azéma; M. Yor, eds.), Séminaire de Probabilités XV, Lecture Notes in Math., vol. 850, Springer, Berlin, 1981, pp. 100-117

[22] S. Molchanov Diffusion processes and Riemannian geometry, Russian Math. Surveys, Volume 30 (1975), pp. 1-63

[23] G. Segal Two-dimensional conformal field theories and modular functors, IXth International Congress on Mathematical Physics (Swansea, 1988), Hilger, Bristol, 1989, pp. 22-37

[24] H. Sugita Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka. J. Math., Volume 25 (1988), pp. 665-696

Cité par Sources :

Commentaires - Politique