[Pantalon de Feller]
Nous definissons un espace de Banach E associé a l'espace des lacets tel qu'un pantalon aléatoire réalise une application continue de
Given a manifold M we define a Banach space E associated with the loop space
Accepté le :
Publié le :
Zdzisław Brzeźniak 1 ; Remi Léandre 2
@article{CRMATH_2006__343_5_333_0, author = {Zdzis{\l}aw Brze\'zniak and Remi L\'eandre}, title = {Fellerian pants}, journal = {Comptes Rendus. Math\'ematique}, pages = {333--338}, publisher = {Elsevier}, volume = {343}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2006.07.003}, language = {en}, }
Zdzisław Brzeźniak; Remi Léandre. Fellerian pants. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 333-338. doi : 10.1016/j.crma.2006.07.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.07.003/
[1] H. Airault, P. Malliavin, Quasi-sure analysis, Publication of University Paris VI, 1990
[2] H. Airault, P. Malliavin, Analysis over loop groups, Publication of University Paris VI, 1991
[3] Stochastic Equations and Differential Geometry, Mathematics and Its Applications, vol. 30, Kluwer Academic Publishers, Dordrecht, 1990
[4] Large deviations and the Malliavin Calculus, Progress in Mathematics, vol. 45, Birkhäuser, Boston, 1984
[5] Stochastic differential equations on Banach manifolds; applications to diffusions on loop spaces, MFAT, Volume 6 (2000) no. 1, pp. 43-84 (a special volume dedicated to the memory of Professor Yuri Daletski)
[6] Horizontal lift of an infinite dimensional diffusion, Potential Anal., Volume 12 (2000), pp. 249-280
[7] Z. Brzeźniak, R. Léandre, Stochastic pants over a Riemannian manifold, in preparation
[8] Conditioning a lifted stochastic system in a product space, Ann. Probab., Volume 16 (1988) no. 4, pp. 1840-1853
[9] Stochastic Differential Equations on Manifolds, London Math. Soc. Lecture Notes Ser., vol. 70, Cambridge University Press, 1982
[10] Spectra of Wess–Zumino–Witten models with arbitrary simple groups, Comm. Math. Phys., Volume 117 (1988) no. 1, pp. 127-158
[11] K. Gawȩdzki, Conformal field theory, Séminaire Bourbaki, Vol. 1988/89; Astérisque No. 177–178, Exp. No. 704 (1989) 95–126
[12] Quasi sure stochastic flows, Stochastics Stochastics Rep., Volume 33 (1990) no. 3–4, pp. 149-157
[13] Diffusion and Brownian Motion on infinite dimensional manifolds, Trans. Amer. Math. Soc., Volume 169 (1972), pp. 439-459
[14] Analysis over loop space and topology, Math. Notes, Volume 72 (2002), pp. 212-229
[15] Brownian surfaces with boundary and Deligne cohomology, Rep. Math. Phys., Volume 52 (2003), pp. 353-362
[16] Markov property and operads, Entropy, Volume 6 (2004), pp. 180-215
[17] Two examples of stochastic field theories, Osaka J. Math., Volume 42 (2005), pp. 353-365
[18] Brownian pants and Deligne cohomology, J. Math. Phys., Volume 46 (2005) no. 1–20, p. 033503
[19] R. Léandre, Galton–Watson tree and branching loops, in: I. Mladenov, A. Hirschfeld (Eds.), Geometry, Integrability and Quantization, Softek, 2005, pp. 267–283
[20] Stochastic Analysis, Springer, Berlin, 1997
[21] Flot d'une équation différentielle stochastique (J. Azéma; M. Yor, eds.), Séminaire de Probabilités XV, Lecture Notes in Math., vol. 850, Springer, Berlin, 1981, pp. 100-117
[22] Diffusion processes and Riemannian geometry, Russian Math. Surveys, Volume 30 (1975), pp. 1-63
[23] Two-dimensional conformal field theories and modular functors, IXth International Congress on Mathematical Physics (Swansea, 1988), Hilger, Bristol, 1989, pp. 22-37
[24] Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka. J. Math., Volume 25 (1988), pp. 665-696
Cité par Sources :
Commentaires - Politique