The arbitrary functions principle says that the fractional part of nX converges stably to an independent random variable uniformly distributed on the unit interval, as soon as the random variable X possesses a density or a characteristic function vanishing at infinity. We prove a similar property for random variables defined on the Wiener space when the stochastic measure is crumpled on itself.
Le principe des fonctions arbitraires dit que la partie fractionnaire de nX converge stablement vers une variable aléatoire indépendante uniformément répartie sur dès que X a une densité ou seulement une fonction caractéristique tendant vers zéro à l'infini. Nous établissons une propriété analogue pour des variables aléatoires définies sur l'espace du mouvement brownien par repliement de la mesure stochastique sur elle-même.
Accepted:
Published online:
Nicolas Bouleau 1
@article{CRMATH_2006__343_5_329_0, author = {Nicolas Bouleau}, title = {An extension to the {Wiener} space of the arbitrary functions principle}, journal = {Comptes Rendus. Math\'ematique}, pages = {329--332}, publisher = {Elsevier}, volume = {343}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2006.06.028}, language = {en}, }
Nicolas Bouleau. An extension to the Wiener space of the arbitrary functions principle. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 329-332. doi : 10.1016/j.crma.2006.06.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.028/
[1] N. Bouleau, When and how an error yields a Dirichlet form, J. Funct. Anal., in press
[2] E. Hopf, Über die Bedeutung der willkürlichen Funktionen für die Wahrscheinlichkeitstheorie, Jahresbericht der Deutschen Math. Vereinigung XLVI, I, 9/12 (1936) 179–194
[3] Wong–Zakai corrections, random evolutions and simulation schemes for SDEs, Stochastic Analysis, Academic Press, 1991, pp. 331-346
[4] Seventy years of Rajchman measures, J. Fourier Anal. Appl. (1995), pp. 363-377 (Kahane special issue)
[5] Calcul des Probabilités, Gauthier-Villars, 1912
[6] Limit distribution for the error in approximation of stochastic integrals, Ann. Probab., Volume 8 (1980), pp. 241-251
Cited by Sources:
Comments - Policy