Comptes Rendus
Numerical Analysis/Partial Differential Equations
A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I): Controllability problem formulation and related iterative solution
Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 493-498.

In this Note we discuss an exact controllability based method for the computation of the time-periodic solutions of a scalar wave equation with constant coefficients. We take advantage of an equivalent mixed formulation of the wave problem to derive a related controllability problem taking place in (L2(Ω))d+1 (assuming that ΩRd). Compared to previous work, where the controllability problem takes place in a subspace of H1(Ω)×L2(Ω), we can compute the periodic solutions by solving the novel controllability problem by a conjugate gradient algorithm operating in (L2(Ω))d+1. The finite dimensional realization of the above algorithm does not require special preconditioning (as it is the case when the control space is contained in H1(Ω)×L2(Ω), requiring then the solution of discrete elliptic problems to achieve preconditioning). The results of numerical experiments validating this novel approach will be presented in a further Note.

Dans cette Note, on étudie une méthode, basée sur la contrôlabilité exacte, pour le calcul des solutions périodiques en temps d'une équation des ondes scalaire à coefficients constants. On y prend avantage d'une formulation mixte équivalente du problème d'ondes pour se rammener à un problème de contrôlabilité posé dans (L2(Ω))d+1 (on suppose que ΩRd). Comparé à des travaux précédents, où le problème de contrôlabilité est posé dans un sous-espace de H1(Ω)×L2(Ω), on peut calculer les solutions périodiques en résolvant le nouveau problème de contrôlabilité par un algorithme de gradient conjugué opérant dans (L2(Ω))d+1. L' analogue discret de l'algorithme ci-dessus ne demande pas de préconditionnement sophistiqué (comme c'est le cas quand l'espace de contrôle est contenu dans H1(Ω)×L2(Ω), exigeant alors la résolution de problèmes elliptiques discrets pour préconditionner). Les résultats d'essais numériques validant la nouvelle approche feront l'objet d'une note ultérieure.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.08.002

Roland Glowinski 1; Tuomo Rossi 2

1 Department of Mathematics, University of Houston, 4800, Calhoun, Houston, TX 77004, USA
2 Department of Mathematical Information Technology, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
@article{CRMATH_2006__343_7_493_0,
     author = {Roland Glowinski and Tuomo Rossi},
     title = {A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. {(I):} {Controllability} problem formulation and related iterative solution},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {493--498},
     publisher = {Elsevier},
     volume = {343},
     number = {7},
     year = {2006},
     doi = {10.1016/j.crma.2006.08.002},
     language = {en},
}
TY  - JOUR
AU  - Roland Glowinski
AU  - Tuomo Rossi
TI  - A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I): Controllability problem formulation and related iterative solution
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 493
EP  - 498
VL  - 343
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2006.08.002
LA  - en
ID  - CRMATH_2006__343_7_493_0
ER  - 
%0 Journal Article
%A Roland Glowinski
%A Tuomo Rossi
%T A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I): Controllability problem formulation and related iterative solution
%J Comptes Rendus. Mathématique
%D 2006
%P 493-498
%V 343
%N 7
%I Elsevier
%R 10.1016/j.crma.2006.08.002
%G en
%F CRMATH_2006__343_7_493_0
Roland Glowinski; Tuomo Rossi. A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I): Controllability problem formulation and related iterative solution. Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 493-498. doi : 10.1016/j.crma.2006.08.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.08.002/

[1] C. Bardos; J. Rauch Variational algorithms for the Helmholtz equation using time evolution and artificial boundaries, Asymptotic Analysis, Volume 9 (1994), pp. 101-117

[2] F. Brezzi; M. Fortin Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991

[3] M.O. Bristeau; R. Glowinski; J. Périaux Using exact controllability to solve the Helmholtz equation at high wave numbers (R. Kleinman; Th. Angell; D. Colton; F. Santosa; I. Stakgold, eds.), Mathematical and Numerical Aspects of Wave Propagation, SIAM, Philadelphia, PA, 1993, pp. 113-127

[4] M.O. Bristeau; R. Glowinski; J. Périaux Controllability methods for the computation of time-periodic solutions; application to scattering, Journal of Computational Physics, Volume 147 (1998), pp. 265-292

[5] R. Glowinski Finite element methods for incompressible viscous flow (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. IX, North-Holland, Amsterdam, 2003, pp. 3-1176

[6] R. Glowinski; W. Kinton; M.F. Wheeler A mixed finite element formulation for the boundary controllability of the wave equation, International Journal for Numerical Methods in Engineering, Volume 27 (1989), pp. 623-635

[7] R. Glowinski, J.L. Lions, Exact and approximate controllability for distributed parameter systems (II), in: Acta Numerica, 1995, pp. 159–333

[8] E. Heikkola; S. Mönkölä; A. Pennanen; T. Rossi Solution of the Helmholtz equation with controllability and spectral element methods, Journal of Structural Mechanics, Volume 38 (2005), pp. 121-124

[9] E. Heikkola, S. Mönkölä, A. Pennanen, T. Rossi, Controllability method for acoustic scattering with spectral elements, Journal of Computational and Applied Mathematics (special issue in connection with Waves 2005 conference), 2006, in press

[10] J.E. Roberts; J.-M. Thomas Mixed and hybrid methods (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. II, North-Holland, Amsterdam, 1991, pp. 523-639

Cited by Sources:

Comments - Policy