In this Note we discuss an exact controllability based method for the computation of the time-periodic solutions of a scalar wave equation with constant coefficients. We take advantage of an equivalent mixed formulation of the wave problem to derive a related controllability problem taking place in (assuming that ). Compared to previous work, where the controllability problem takes place in a subspace of , we can compute the periodic solutions by solving the novel controllability problem by a conjugate gradient algorithm operating in . The finite dimensional realization of the above algorithm does not require special preconditioning (as it is the case when the control space is contained in , requiring then the solution of discrete elliptic problems to achieve preconditioning). The results of numerical experiments validating this novel approach will be presented in a further Note.
Dans cette Note, on étudie une méthode, basée sur la contrôlabilité exacte, pour le calcul des solutions périodiques en temps d'une équation des ondes scalaire à coefficients constants. On y prend avantage d'une formulation mixte équivalente du problème d'ondes pour se rammener à un problème de contrôlabilité posé dans (on suppose que ). Comparé à des travaux précédents, où le problème de contrôlabilité est posé dans un sous-espace de , on peut calculer les solutions périodiques en résolvant le nouveau problème de contrôlabilité par un algorithme de gradient conjugué opérant dans . L' analogue discret de l'algorithme ci-dessus ne demande pas de préconditionnement sophistiqué (comme c'est le cas quand l'espace de contrôle est contenu dans , exigeant alors la résolution de problèmes elliptiques discrets pour préconditionner). Les résultats d'essais numériques validant la nouvelle approche feront l'objet d'une note ultérieure.
Accepted:
Published online:
Roland Glowinski 1; Tuomo Rossi 2
@article{CRMATH_2006__343_7_493_0, author = {Roland Glowinski and Tuomo Rossi}, title = {A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. {(I):} {Controllability} problem formulation and related iterative solution}, journal = {Comptes Rendus. Math\'ematique}, pages = {493--498}, publisher = {Elsevier}, volume = {343}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.08.002}, language = {en}, }
TY - JOUR AU - Roland Glowinski AU - Tuomo Rossi TI - A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I): Controllability problem formulation and related iterative solution JO - Comptes Rendus. Mathématique PY - 2006 SP - 493 EP - 498 VL - 343 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2006.08.002 LA - en ID - CRMATH_2006__343_7_493_0 ER -
%0 Journal Article %A Roland Glowinski %A Tuomo Rossi %T A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I): Controllability problem formulation and related iterative solution %J Comptes Rendus. Mathématique %D 2006 %P 493-498 %V 343 %N 7 %I Elsevier %R 10.1016/j.crma.2006.08.002 %G en %F CRMATH_2006__343_7_493_0
Roland Glowinski; Tuomo Rossi. A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I): Controllability problem formulation and related iterative solution. Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 493-498. doi : 10.1016/j.crma.2006.08.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.08.002/
[1] Variational algorithms for the Helmholtz equation using time evolution and artificial boundaries, Asymptotic Analysis, Volume 9 (1994), pp. 101-117
[2] Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991
[3] Using exact controllability to solve the Helmholtz equation at high wave numbers (R. Kleinman; Th. Angell; D. Colton; F. Santosa; I. Stakgold, eds.), Mathematical and Numerical Aspects of Wave Propagation, SIAM, Philadelphia, PA, 1993, pp. 113-127
[4] Controllability methods for the computation of time-periodic solutions; application to scattering, Journal of Computational Physics, Volume 147 (1998), pp. 265-292
[5] Finite element methods for incompressible viscous flow (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. IX, North-Holland, Amsterdam, 2003, pp. 3-1176
[6] A mixed finite element formulation for the boundary controllability of the wave equation, International Journal for Numerical Methods in Engineering, Volume 27 (1989), pp. 623-635
[7] R. Glowinski, J.L. Lions, Exact and approximate controllability for distributed parameter systems (II), in: Acta Numerica, 1995, pp. 159–333
[8] Solution of the Helmholtz equation with controllability and spectral element methods, Journal of Structural Mechanics, Volume 38 (2005), pp. 121-124
[9] E. Heikkola, S. Mönkölä, A. Pennanen, T. Rossi, Controllability method for acoustic scattering with spectral elements, Journal of Computational and Applied Mathematics (special issue in connection with Waves 2005 conference), 2006, in press
[10] Mixed and hybrid methods (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. II, North-Holland, Amsterdam, 1991, pp. 523-639
Cited by Sources:
Comments - Policy