Comptes Rendus
Partial Differential Equations
Heat kernels for non-divergence operators of Hörmander type
[Noyaux de la chaleur pour des opérateurs de Hörmander qui ne sont pas sous forme de divergence]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 463-466.

Nous démontrons l'existence d'une solution fondamentale pour une classe d'opérateurs de Hörmander de type chaleur. Pour cette solution fondamentale et ses dérivées nous obtenons des bornes Gaussiennes optimales qui nous permettent de démontrer une inégalité de Harnack invariante.

We prove the existence of a fundamental solution for a class of Hörmander heat-type operators. For this fundamental solution and its derivatives we obtain sharp Gaussian bounds that allow to prove an invariant Harnack inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.09.003

Marco Bramanti 1 ; Luca Brandolini 2 ; Ermanno Lanconelli 3 ; Francesco Uguzzoni 3

1 Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano, Italy
2 Dipartimento di Ingegneria Gestionale e dell'Informazione, Università di Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
3 Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
@article{CRMATH_2006__343_7_463_0,
     author = {Marco Bramanti and Luca Brandolini and Ermanno Lanconelli and Francesco Uguzzoni},
     title = {Heat kernels for non-divergence operators of {H\"ormander} type},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {463--466},
     publisher = {Elsevier},
     volume = {343},
     number = {7},
     year = {2006},
     doi = {10.1016/j.crma.2006.09.003},
     language = {en},
}
TY  - JOUR
AU  - Marco Bramanti
AU  - Luca Brandolini
AU  - Ermanno Lanconelli
AU  - Francesco Uguzzoni
TI  - Heat kernels for non-divergence operators of Hörmander type
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 463
EP  - 466
VL  - 343
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2006.09.003
LA  - en
ID  - CRMATH_2006__343_7_463_0
ER  - 
%0 Journal Article
%A Marco Bramanti
%A Luca Brandolini
%A Ermanno Lanconelli
%A Francesco Uguzzoni
%T Heat kernels for non-divergence operators of Hörmander type
%J Comptes Rendus. Mathématique
%D 2006
%P 463-466
%V 343
%N 7
%I Elsevier
%R 10.1016/j.crma.2006.09.003
%G en
%F CRMATH_2006__343_7_463_0
Marco Bramanti; Luca Brandolini; Ermanno Lanconelli; Francesco Uguzzoni. Heat kernels for non-divergence operators of Hörmander type. Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 463-466. doi : 10.1016/j.crma.2006.09.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.003/

[1] A. Bonfiglioli; E. Lanconelli; F. Uguzzoni Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations, Volume 7 (2002), pp. 1153-1192

[2] A. Bonfiglioli; E. Lanconelli; F. Uguzzoni Fundamental solutions for non-divergence form operators on stratified groups, Trans. Amer. Math. Soc., Volume 356 (2004) no. 7, pp. 2709-2737

[3] A. Bonfiglioli, F. Uguzzoni, Harnack inequality for non-divergence form operators on stratified groups, Trans. Amer. Math. Soc., in press

[4] J.-M. Bony Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), Volume 19 (1969), pp. 277-304

[5] M. Bramanti, L. Brandolini, Schauder estimates for parabolic nondivergence operators of Hörmander type, J. Differential Equations, in press

[6] M. Bramanti, L. Brandolini, E. Lanconelli, F. Uguzzoni, Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities, Preprint

[7] E.B. Fabes; D.W. Stroock A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech. Anal., Volume 96 (1986), pp. 327-338

[8] D.S. Jerison; A. Sánchez-Calle Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J., Volume 35 (1986) no. 4, pp. 835-854

[9] S. Kusuoka; D. Stroock Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. of Math. (2), Volume 127 (1988) no. 1, pp. 165-189

[10] A. Montanari; E. Lanconelli Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems, J. Differential Equations, Volume 202 (2004) no. 2, pp. 306-331

[11] L.P. Rothschild; E.M. Stein Hypoelliptic differential operators and nilpotent groups, Acta Math., Volume 137 (1976), pp. 247-320

[12] N.Th. Varopoulos; L. Saloff-Coste; T. Coulhon Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992

  • Zixia Yuan Global existence and asymptotic behavior of solutions to a semilinear parabolic equation on Carnot groups, Boundary Value Problems, Volume 2015 (2015), p. 18 (Id/No 119) | DOI:10.1186/s13661-015-0383-8 | Zbl:1338.35261
  • Marco Bramanti Beyond Hörmander’s Operators, An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields (2014), p. 119 | DOI:10.1007/978-3-319-02087-7_5
  • Xiaojing Feng; Pengcheng Niu Local Sobolev-Morrey estimates for nondivergence operators with drift on homogeneous groups, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM, Volume 108 (2014) no. 2, pp. 683-709 | DOI:10.1007/s13398-013-0134-6 | Zbl:1302.35086
  • Marco Bramanti; Luca Brandolini; Ermanno Lanconelli; Francesco Uguzzoni Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities, Memoirs of the American Mathematical Society, 961, Providence, RI: American Mathematical Society (AMS), 2010 | DOI:10.1090/s0065-9266-09-00605-x | Zbl:1218.35001
  • Wolfhard Hansen; Ivan Netuka Density of extremal measures in parabolic potential theory, Mathematische Annalen, Volume 345 (2009) no. 3, pp. 657-684 | DOI:10.1007/s00208-009-0371-3 | Zbl:1191.31003
  • Chiara Cinti; Sergio Polidoro Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators, Journal of Mathematical Analysis and Applications, Volume 338 (2008) no. 2, pp. 946-969 | DOI:10.1016/j.jmaa.2007.05.059 | Zbl:1152.35062

Cité par 6 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: