[Noyaux de la chaleur pour des opérateurs de Hörmander qui ne sont pas sous forme de divergence]
Nous démontrons l'existence d'une solution fondamentale pour une classe d'opérateurs de Hörmander de type chaleur. Pour cette solution fondamentale et ses dérivées nous obtenons des bornes Gaussiennes optimales qui nous permettent de démontrer une inégalité de Harnack invariante.
We prove the existence of a fundamental solution for a class of Hörmander heat-type operators. For this fundamental solution and its derivatives we obtain sharp Gaussian bounds that allow to prove an invariant Harnack inequality.
Accepté le :
Publié le :
Marco Bramanti 1 ; Luca Brandolini 2 ; Ermanno Lanconelli 3 ; Francesco Uguzzoni 3
@article{CRMATH_2006__343_7_463_0, author = {Marco Bramanti and Luca Brandolini and Ermanno Lanconelli and Francesco Uguzzoni}, title = {Heat kernels for non-divergence operators of {H\"ormander} type}, journal = {Comptes Rendus. Math\'ematique}, pages = {463--466}, publisher = {Elsevier}, volume = {343}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.09.003}, language = {en}, }
TY - JOUR AU - Marco Bramanti AU - Luca Brandolini AU - Ermanno Lanconelli AU - Francesco Uguzzoni TI - Heat kernels for non-divergence operators of Hörmander type JO - Comptes Rendus. Mathématique PY - 2006 SP - 463 EP - 466 VL - 343 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2006.09.003 LA - en ID - CRMATH_2006__343_7_463_0 ER -
%0 Journal Article %A Marco Bramanti %A Luca Brandolini %A Ermanno Lanconelli %A Francesco Uguzzoni %T Heat kernels for non-divergence operators of Hörmander type %J Comptes Rendus. Mathématique %D 2006 %P 463-466 %V 343 %N 7 %I Elsevier %R 10.1016/j.crma.2006.09.003 %G en %F CRMATH_2006__343_7_463_0
Marco Bramanti; Luca Brandolini; Ermanno Lanconelli; Francesco Uguzzoni. Heat kernels for non-divergence operators of Hörmander type. Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 463-466. doi : 10.1016/j.crma.2006.09.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.003/
[1] Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations, Volume 7 (2002), pp. 1153-1192
[2] Fundamental solutions for non-divergence form operators on stratified groups, Trans. Amer. Math. Soc., Volume 356 (2004) no. 7, pp. 2709-2737
[3] A. Bonfiglioli, F. Uguzzoni, Harnack inequality for non-divergence form operators on stratified groups, Trans. Amer. Math. Soc., in press
[4] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), Volume 19 (1969), pp. 277-304
[5] M. Bramanti, L. Brandolini, Schauder estimates for parabolic nondivergence operators of Hörmander type, J. Differential Equations, in press
[6] M. Bramanti, L. Brandolini, E. Lanconelli, F. Uguzzoni, Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities, Preprint
[7] A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech. Anal., Volume 96 (1986), pp. 327-338
[8] Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J., Volume 35 (1986) no. 4, pp. 835-854
[9] Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. of Math. (2), Volume 127 (1988) no. 1, pp. 165-189
[10] Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems, J. Differential Equations, Volume 202 (2004) no. 2, pp. 306-331
[11] Hypoelliptic differential operators and nilpotent groups, Acta Math., Volume 137 (1976), pp. 247-320
[12] Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992
- Global existence and asymptotic behavior of solutions to a semilinear parabolic equation on Carnot groups, Boundary Value Problems, Volume 2015 (2015), p. 18 (Id/No 119) | DOI:10.1186/s13661-015-0383-8 | Zbl:1338.35261
- Beyond Hörmander’s Operators, An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields (2014), p. 119 | DOI:10.1007/978-3-319-02087-7_5
- Local Sobolev-Morrey estimates for nondivergence operators with drift on homogeneous groups, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM, Volume 108 (2014) no. 2, pp. 683-709 | DOI:10.1007/s13398-013-0134-6 | Zbl:1302.35086
- Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities, Memoirs of the American Mathematical Society, 961, Providence, RI: American Mathematical Society (AMS), 2010 | DOI:10.1090/s0065-9266-09-00605-x | Zbl:1218.35001
- Density of extremal measures in parabolic potential theory, Mathematische Annalen, Volume 345 (2009) no. 3, pp. 657-684 | DOI:10.1007/s00208-009-0371-3 | Zbl:1191.31003
- Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators, Journal of Mathematical Analysis and Applications, Volume 338 (2008) no. 2, pp. 946-969 | DOI:10.1016/j.jmaa.2007.05.059 | Zbl:1152.35062
Cité par 6 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier