[Théorie linéaire de génération de vagues par mouvement du fond]
Les calculs de propagation d'ondes longues à travers l'océan doivent naturellement être alimentés par la condition initiale. Le but de cette note est de montrer l'insuffisance de l'approche classique qui consiste à translater la déformation « gelée » du fond vers la surface libre et à la laisser se propager. Un calcul analytique qui met en évidence les inconvénients de l'approche classique de génération passive est présenté ici. Les solutions linéarisées semblent être bien adaptées pour traiter la génération de vagues par mouvement du fond.
The computation of long wave propagation through the ocean obviously depends on the initial condition. When the waves are generated by a moving bottom, a traditional approach consists in translating the ‘frozen’ sea bed deformation to the free surface and propagating it. The present study shows the differences between the classical approach (passive generation) and the active generation where the bottom motion is included. The analytical solutions presented here exhibit some of the drawbacks of passive generation. The linearized solutions seem to be sufficient to consider the generation of water waves by a moving bottom.
Accepté le :
Publié le :
Denys Dutykh 1 ; Frédéric Dias 1 ; Youen Kervella 2
@article{CRMATH_2006__343_7_499_0, author = {Denys Dutykh and Fr\'ed\'eric Dias and Youen Kervella}, title = {Linear theory of wave generation by a moving bottom}, journal = {Comptes Rendus. Math\'ematique}, pages = {499--504}, publisher = {Elsevier}, volume = {343}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.09.016}, language = {en}, }
Denys Dutykh; Frédéric Dias; Youen Kervella. Linear theory of wave generation by a moving bottom. Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 499-504. doi : 10.1016/j.crma.2006.09.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.016/
[1] D. Dutykh, F. Dias, Water waves generated by a moving bottom, in: A. Kundu (Ed.), Tsunami and Nonlinear Waves, Geosciences, Springer-Verlag, 2006, in press
[2] On a quadrature formula for trigonometric integrals, Proc. Royal Soc. Edinburgh, Volume 49 (1928), pp. 38-47
[3] A note on tsunamis: their generation and propagation in an ocean of uniform depth, J. Fluid Mech., Volume 60 (1973), pp. 769-799
[4] Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., Volume 82 (1992), pp. 1018-1040
Cité par Sources :
Commentaires - Politique