[Asymptotiques exponentielles et invariance adiabatique d'un oscillateur simple]
On donne une autre démonstration de l'expression asymptotique que Littlewood a obtenue pour le problème de Lorentz (1911) sur l'invariance adiabatique d'un pendule simple. Notre approche repose sur l'approximation WKB habituelle. Notre démonstration est plus simple que celle de Littlewood (1963) et celle de Wasow (1973). Si le coefficient de l'équation différentielle qu'ils considèrent est analytique, alors l'expression asymptotique de Littlewood peut même être remplacée par un terme exponentiellement petit.
An alternative proof is provided for Littlewood's asymptotic expression arising from Lorentz's problem (1911) on the adiabatic invariance of a simple pendulum. Our approach is based on a standard WKB approximation. Our proof is simpler than those of both Littlewood (1963) and Wasow (1973). If the coefficient function in their differential equation is analytic, then Littlewood's asymptotic expression can even be replaced by an exponentially small term.
Accepté le :
Publié le :
Chunhua Ou 1 ; Roderick Wong 2
@article{CRMATH_2006__343_7_457_0, author = {Chunhua Ou and Roderick Wong}, title = {Exponential asymptotics and adiabatic invariance of a simple oscillator}, journal = {Comptes Rendus. Math\'ematique}, pages = {457--462}, publisher = {Elsevier}, volume = {343}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.09.017}, language = {en}, }
Chunhua Ou; Roderick Wong. Exponential asymptotics and adiabatic invariance of a simple oscillator. Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 457-462. doi : 10.1016/j.crma.2006.09.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.017/
[1] Lorentz's pendulum problem, Ann. Phys., Volume 21 (1963), pp. 233-242
[2] Adiabatic variation. I. Exponential property for the simple oscillator, Z. Angew. Math. Phys., Volume 24 (1973), pp. 293-303
[3] Exponential asymptotics, SIAM Rev., Volume 22 (1980) no. 2, pp. 213-224
[4] Asymptotics and Special Functions, Academic Press, New York, 1974 (Reprinted by, 1997, A.K. Peters, Wellesley, MA)
[5] Adiabatic invariance of a simple oscillator, SIAM J. Math. Anal., Volume 4 (1973), pp. 78-88
[6] Asymptotic Approximations of Integrals, Academic Press, Boston, MA, 1989 (Reprinted by, 2001, SIAM, Philadelphia, PA)
Cité par Sources :
Commentaires - Politique