We compute exact formulas for the influence coefficients deriving from the finite element discretization of integral equation methods. We consider the case of the Newtonian potential and plane triangles of the lower degree.
Nous établissons des formules exactes pour les coefficients d'influence issus de la discrétisation par éléments finis des méthodes d'équations intégrales, dans le cas du potentiel Newtonien et de triangles plans du plus bas degré.
Accepted:
Published online:
Marc Lenoir 1
@article{CRMATH_2006__343_8_561_0, author = {Marc Lenoir}, title = {Influence coefficients for variational integral equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {561--564}, publisher = {Elsevier}, volume = {343}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.09.020}, language = {en}, }
Marc Lenoir. Influence coefficients for variational integral equations. Comptes Rendus. Mathématique, Volume 343 (2006) no. 8, pp. 561-564. doi : 10.1016/j.crma.2006.09.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.020/
[1] Efficient automatic quadrature in 3-D Galerkin BEM, Comput. Methods Appl. Mech. Eng., Volume 157 (1998), pp. 215-224
[2] Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, vol. 144, Springer, 2001
[3] Singular and near singular integrals, SIAM J. Appl. Math., Volume 53 (1993) no. 2, pp. 340-357
Cited by Sources:
Comments - Policy