Comptes Rendus
Probability Theory
Asymptotic behavior of the distribution of the stock price in models with stochastic volatility: the Hull–White model
[Comportement asymptotique de la distribution du prix de l'action dans les modèles à volatilité stochastique : le modèle de Hull–White]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 8, pp. 519-523.

In the present Note, we study the asymptotic behavior of the distribution density of the stock price process in the Hull–White model. The leading terms in the asymptotic expansions at zero and infinity are found for such a density and the corresponding error estimates are given. Similar problems are solved for time averages of the volatility process, which are also of interest in the study of Asian options.

La présente Note étudie le comportement asymptotique de la densité de distribution du processus du prix de l'action dans le modèle de Hull–White. On determine la partie principale dans le développement asymptotique en zéro et en l'infini pour une telle densité et on estime l'erreur correspondante. Des problèmes similaires se résolvent pour les moyennes temporelles du processus de volatilité qui sont aussi intéressants dans l'étude des options asiatiques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.09.029

Archil Gulisashvili 1 ; Elias M. Stein 2

1 Department of Mathematics, Ohio University, Athens, OH 45701, USA
2 Department of Mathematics, Princeton University, Princeton, NJ 08540, USA
@article{CRMATH_2006__343_8_519_0,
     author = {Archil Gulisashvili and Elias M. Stein},
     title = {Asymptotic behavior of the distribution of the stock price in models with stochastic volatility: the {Hull{\textendash}White} model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {519--523},
     publisher = {Elsevier},
     volume = {343},
     number = {8},
     year = {2006},
     doi = {10.1016/j.crma.2006.09.029},
     language = {en},
}
TY  - JOUR
AU  - Archil Gulisashvili
AU  - Elias M. Stein
TI  - Asymptotic behavior of the distribution of the stock price in models with stochastic volatility: the Hull–White model
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 519
EP  - 523
VL  - 343
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2006.09.029
LA  - en
ID  - CRMATH_2006__343_8_519_0
ER  - 
%0 Journal Article
%A Archil Gulisashvili
%A Elias M. Stein
%T Asymptotic behavior of the distribution of the stock price in models with stochastic volatility: the Hull–White model
%J Comptes Rendus. Mathématique
%D 2006
%P 519-523
%V 343
%N 8
%I Elsevier
%R 10.1016/j.crma.2006.09.029
%G en
%F CRMATH_2006__343_8_519_0
Archil Gulisashvili; Elias M. Stein. Asymptotic behavior of the distribution of the stock price in models with stochastic volatility: the Hull–White model. Comptes Rendus. Mathématique, Volume 343 (2006) no. 8, pp. 519-523. doi : 10.1016/j.crma.2006.09.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.029/

[1] L. Alili; J.C. Gruet An explanation of a generalized Boujerol's identity in terms of hyperbolic geometry (M. Yor, ed.), Exponential Functionals and Principal Values Related to Brownian Motion, Biblioteca de la Revista Matemática Ibero-Americana, Revista Matemática Iberoamericana, Madrid, 1997, pp. 15-33

[2] D. Dufresne The integral of geometric Brownian motion, Adv. Appl. Probab., Volume 33 (2001), pp. 223-241

[3] J.-P. Fouque; G. Papanicolaou; K.R. Sircar Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, Cambridge, 2000

[4] J. Hull; A. White The pricing of options on assets with stochastic volatilities, J. Finance, Volume 42 (1987), pp. 281-300

[5] H. Matsumoto; M. Yor On Dufresne's relation between the probability laws of exponential functionals of Brownian motions with different drifts, Adv. Appl. Probab., Volume 35 (2003), pp. 184-206

[6] M. Schröder On the integral of geometric Brownian motion, Adv. Appl. Probab., Volume 35 (2003), pp. 159-183

[7] E.M. Stein; J. Stein Stock price distributions with stochastic volatility: An analytic approach, Rev. Financial Stud., Volume 4 (1991), pp. 727-752

[8] M. Yor On some exponential functionals of Brownian motion, Adv. Appl. Probab., Volume 24 (1992), pp. 509-531

[9] M. Yor Exponential Functionals of Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2001

  • Dan Pirjol Small-t Expansion for the Hartman-Watson Distribution, Methodology and Computing in Applied Probability, Volume 23 (2021) no. 4, p. 1537 | DOI:10.1007/s11009-020-09827-5
  • Archil Gulisashvili Large Deviation Principle for Volterra Type Fractional Stochastic Volatility Models, SIAM Journal on Financial Mathematics, Volume 9 (2018) no. 3, p. 1102 | DOI:10.1137/17m116344x
  • MARTIN FORDE; ANDREY POGUDIN THE LARGE-MATURITY SMILE FOR THE SABR AND CEV-HESTON MODELS, International Journal of Theoretical and Applied Finance, Volume 16 (2013) no. 08, p. 1350047 | DOI:10.1142/s0219024913500477
  • Waldemar Antonio da Rocha de Souza; João Gomes Martines-Filho; Pedro Valentim Marques Uso da estrutura a termo das volatilidades implícitas das opções de soja do CME group para previsões em Mato Grosso, Revista de Economia e Sociologia Rural, Volume 51 (2013) no. 2, p. 255 | DOI:10.1590/s0103-20032013000200003
  • Mikhail Martynov; Olga Rozanova On dependence of volatility on return for stochastic volatility models, Stochastics, Volume 85 (2013) no. 5, p. 917 | DOI:10.1080/17442508.2012.673616
  • MARTIN FORDE EXACT PRICING AND LARGE-TIME ASYMPTOTICS FOR THE MODIFIED SABR MODEL AND THE BROWNIAN EXPONENTIAL FUNCTIONAL, International Journal of Theoretical and Applied Finance, Volume 14 (2011) no. 04, p. 559 | DOI:10.1142/s0219024911006735
  • Stefan Gerhold The Hartman-Watson Distribution Revisited: Asymptotics for Pricing Asian Options, Journal of Applied Probability, Volume 48 (2011) no. 03, p. 892 | DOI:10.1017/s002190020000841x
  • Stefan Gerhold The Hartman-Watson Distribution Revisited: Asymptotics for Pricing Asian Options, Journal of Applied Probability, Volume 48 (2011) no. 3, p. 892 | DOI:10.1239/jap/1316796924
  • Archil Gulisashvili; Elias M. Stein Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models, Applied Mathematics and Optimization, Volume 61 (2010) no. 3, p. 287 | DOI:10.1007/s00245-009-9085-x
  • Archil Gulisashvili; Elias M. Stein ASYMPTOTIC BEHAVIOR OF DISTRIBUTION DENSITIES IN MODELS WITH STOCHASTIC VOLATILITY. I, Mathematical Finance, Volume 20 (2010) no. 3, p. 447 | DOI:10.1111/j.1467-9965.2010.00406.x
  • Ilya Molchanov; Michael Schmutz Multivariate Extension of Put-Call Symmetry, SIAM Journal on Financial Mathematics, Volume 1 (2010) no. 1, p. 396 | DOI:10.1137/090754194
  • Archil Gulisashvili Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes, SIAM Journal on Financial Mathematics, Volume 1 (2010) no. 1, p. 609 | DOI:10.1137/090762713
  • Archil Gulisashvili; Elias M. Stein IMPLIED VOLATILITY IN THE HULL–WHITE MODEL, Mathematical Finance, Volume 19 (2009) no. 2, p. 303 | DOI:10.1111/j.1467-9965.2009.00368.x

Cité par 13 documents. Sources : Crossref

Commentaires - Politique