[Comportement asymptotique de la distribution du prix de l'action dans les modèles à volatilité stochastique : le modèle de Hull–White]
In the present Note, we study the asymptotic behavior of the distribution density of the stock price process in the Hull–White model. The leading terms in the asymptotic expansions at zero and infinity are found for such a density and the corresponding error estimates are given. Similar problems are solved for time averages of the volatility process, which are also of interest in the study of Asian options.
La présente Note étudie le comportement asymptotique de la densité de distribution du processus du prix de l'action dans le modèle de Hull–White. On determine la partie principale dans le développement asymptotique en zéro et en l'infini pour une telle densité et on estime l'erreur correspondante. Des problèmes similaires se résolvent pour les moyennes temporelles du processus de volatilité qui sont aussi intéressants dans l'étude des options asiatiques.
Accepté le :
Publié le :
Archil Gulisashvili 1 ; Elias M. Stein 2
@article{CRMATH_2006__343_8_519_0, author = {Archil Gulisashvili and Elias M. Stein}, title = {Asymptotic behavior of the distribution of the stock price in models with stochastic volatility: the {Hull{\textendash}White} model}, journal = {Comptes Rendus. Math\'ematique}, pages = {519--523}, publisher = {Elsevier}, volume = {343}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.09.029}, language = {en}, }
TY - JOUR AU - Archil Gulisashvili AU - Elias M. Stein TI - Asymptotic behavior of the distribution of the stock price in models with stochastic volatility: the Hull–White model JO - Comptes Rendus. Mathématique PY - 2006 SP - 519 EP - 523 VL - 343 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2006.09.029 LA - en ID - CRMATH_2006__343_8_519_0 ER -
%0 Journal Article %A Archil Gulisashvili %A Elias M. Stein %T Asymptotic behavior of the distribution of the stock price in models with stochastic volatility: the Hull–White model %J Comptes Rendus. Mathématique %D 2006 %P 519-523 %V 343 %N 8 %I Elsevier %R 10.1016/j.crma.2006.09.029 %G en %F CRMATH_2006__343_8_519_0
Archil Gulisashvili; Elias M. Stein. Asymptotic behavior of the distribution of the stock price in models with stochastic volatility: the Hull–White model. Comptes Rendus. Mathématique, Volume 343 (2006) no. 8, pp. 519-523. doi : 10.1016/j.crma.2006.09.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.029/
[1] An explanation of a generalized Boujerol's identity in terms of hyperbolic geometry (M. Yor, ed.), Exponential Functionals and Principal Values Related to Brownian Motion, Biblioteca de la Revista Matemática Ibero-Americana, Revista Matemática Iberoamericana, Madrid, 1997, pp. 15-33
[2] The integral of geometric Brownian motion, Adv. Appl. Probab., Volume 33 (2001), pp. 223-241
[3] Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, Cambridge, 2000
[4] The pricing of options on assets with stochastic volatilities, J. Finance, Volume 42 (1987), pp. 281-300
[5] On Dufresne's relation between the probability laws of exponential functionals of Brownian motions with different drifts, Adv. Appl. Probab., Volume 35 (2003), pp. 184-206
[6] On the integral of geometric Brownian motion, Adv. Appl. Probab., Volume 35 (2003), pp. 159-183
[7] Stock price distributions with stochastic volatility: An analytic approach, Rev. Financial Stud., Volume 4 (1991), pp. 727-752
[8] On some exponential functionals of Brownian motion, Adv. Appl. Probab., Volume 24 (1992), pp. 509-531
[9] Exponential Functionals of Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2001
- Small-t Expansion for the Hartman-Watson Distribution, Methodology and Computing in Applied Probability, Volume 23 (2021) no. 4, p. 1537 | DOI:10.1007/s11009-020-09827-5
- Large Deviation Principle for Volterra Type Fractional Stochastic Volatility Models, SIAM Journal on Financial Mathematics, Volume 9 (2018) no. 3, p. 1102 | DOI:10.1137/17m116344x
- THE LARGE-MATURITY SMILE FOR THE SABR AND CEV-HESTON MODELS, International Journal of Theoretical and Applied Finance, Volume 16 (2013) no. 08, p. 1350047 | DOI:10.1142/s0219024913500477
- Uso da estrutura a termo das volatilidades implícitas das opções de soja do CME group para previsões em Mato Grosso, Revista de Economia e Sociologia Rural, Volume 51 (2013) no. 2, p. 255 | DOI:10.1590/s0103-20032013000200003
- On dependence of volatility on return for stochastic volatility models, Stochastics, Volume 85 (2013) no. 5, p. 917 | DOI:10.1080/17442508.2012.673616
- EXACT PRICING AND LARGE-TIME ASYMPTOTICS FOR THE MODIFIED SABR MODEL AND THE BROWNIAN EXPONENTIAL FUNCTIONAL, International Journal of Theoretical and Applied Finance, Volume 14 (2011) no. 04, p. 559 | DOI:10.1142/s0219024911006735
- The Hartman-Watson Distribution Revisited: Asymptotics for Pricing Asian Options, Journal of Applied Probability, Volume 48 (2011) no. 03, p. 892 | DOI:10.1017/s002190020000841x
- The Hartman-Watson Distribution Revisited: Asymptotics for Pricing Asian Options, Journal of Applied Probability, Volume 48 (2011) no. 3, p. 892 | DOI:10.1239/jap/1316796924
- Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models, Applied Mathematics and Optimization, Volume 61 (2010) no. 3, p. 287 | DOI:10.1007/s00245-009-9085-x
- ASYMPTOTIC BEHAVIOR OF DISTRIBUTION DENSITIES IN MODELS WITH STOCHASTIC VOLATILITY. I, Mathematical Finance, Volume 20 (2010) no. 3, p. 447 | DOI:10.1111/j.1467-9965.2010.00406.x
- Multivariate Extension of Put-Call Symmetry, SIAM Journal on Financial Mathematics, Volume 1 (2010) no. 1, p. 396 | DOI:10.1137/090754194
- Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes, SIAM Journal on Financial Mathematics, Volume 1 (2010) no. 1, p. 609 | DOI:10.1137/090762713
- IMPLIED VOLATILITY IN THE HULL–WHITE MODEL, Mathematical Finance, Volume 19 (2009) no. 2, p. 303 | DOI:10.1111/j.1467-9965.2009.00368.x
Cité par 13 documents. Sources : Crossref
Commentaires - Politique