[Sur la plus longue sous-suite binaire croissante commune]
Soient et deux suites mutuellement indépendantes de variables aléatoires de Bernoulli indépendantes, équidistribuées de paramètre 1/2. Soit la longueur de la plus longue sous-suite croissante et commune aux deux sous-suites finies and . Nous démontrons que, lorsque n tend vers l'infini, converge en loi vers une fonctionnelle brownienne que nous identifions.
Let and be two independent sequences of iid Bernoulli random variables with parameter 1/2. Let be the length of the longest increasing sequence which is a subsequence of both finite sequences and . We prove that, as n goes to infinity, converges in law to a Brownian functional that we identify.
Accepté le :
Publié le :
Christian Houdré 1 ; Jüri Lember 2 ; Heinrich Matzinger 1
@article{CRMATH_2006__343_9_589_0, author = {Christian Houdr\'e and J\"uri Lember and Heinrich Matzinger}, title = {On the longest common increasing binary subsequence}, journal = {Comptes Rendus. Math\'ematique}, pages = {589--594}, publisher = {Elsevier}, volume = {343}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.10.004}, language = {en}, }
Christian Houdré; Jüri Lember; Heinrich Matzinger. On the longest common increasing binary subsequence. Comptes Rendus. Mathématique, Volume 343 (2006) no. 9, pp. 589-594. doi : 10.1016/j.crma.2006.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.004/
[1] On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc., Volume 12 (1999), pp. 1119-1178
[2] GUEs and queues, Probab. Theory Related Fields, Volume 119 (2001), pp. 256-274
[3] Longest increasing subsequences of random colored permutations, Electron. J. Combin., Volume 6 (1999) (Research Paper 13, 12 pp)
[4] Random words, Toeplitz determinants, and integrable systems. I. Random matrix models and their applications, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, Cambridge, 2001, pp. 245-258
[5] Random words, Toeplitz determinants and integrable systems. II. Advances in nonlinear mathematics and science, Physica D, Volume 152/153 (2001), pp. 199-224
[6] Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. of Math., Volume 153 (2001), pp. 259-296
[7] Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 293, Springer-Verlag, Berlin, 1999
[8] On the distributions of the lengths of the longest monotone subsequences in random words, Probab. Theory Related Fields, Volume 119 (2001), pp. 350-380
[9] Introduction to Computational Biology, Chapman & Hall, 1995
[10] Alignment of BLAST high-scoring segment pairs based on the longest increasing subsequence algorithm, Bioinformatics, Volume 19 (2003), pp. 1391-1396
Cité par Sources :
Commentaires - Politique