[Sur la plus longue sous-suite binaire croissante commune]
Let
Soient
Accepté le :
Publié le :
Christian Houdré 1 ; Jüri Lember 2 ; Heinrich Matzinger 1
@article{CRMATH_2006__343_9_589_0, author = {Christian Houdr\'e and J\"uri Lember and Heinrich Matzinger}, title = {On the longest common increasing binary subsequence}, journal = {Comptes Rendus. Math\'ematique}, pages = {589--594}, publisher = {Elsevier}, volume = {343}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.10.004}, language = {en}, }
Christian Houdré; Jüri Lember; Heinrich Matzinger. On the longest common increasing binary subsequence. Comptes Rendus. Mathématique, Volume 343 (2006) no. 9, pp. 589-594. doi : 10.1016/j.crma.2006.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.004/
[1] On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc., Volume 12 (1999), pp. 1119-1178
[2] GUEs and queues, Probab. Theory Related Fields, Volume 119 (2001), pp. 256-274
[3] Longest increasing subsequences of random colored permutations, Electron. J. Combin., Volume 6 (1999) (Research Paper 13, 12 pp)
[4] Random words, Toeplitz determinants, and integrable systems. I. Random matrix models and their applications, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, Cambridge, 2001, pp. 245-258
[5] Random words, Toeplitz determinants and integrable systems. II. Advances in nonlinear mathematics and science, Physica D, Volume 152/153 (2001), pp. 199-224
[6] Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. of Math., Volume 153 (2001), pp. 259-296
[7] Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 293, Springer-Verlag, Berlin, 1999
[8] On the distributions of the lengths of the longest monotone subsequences in random words, Probab. Theory Related Fields, Volume 119 (2001), pp. 350-380
[9] Introduction to Computational Biology, Chapman & Hall, 1995
[10] Alignment of BLAST high-scoring segment pairs based on the longest increasing subsequence algorithm, Bioinformatics, Volume 19 (2003), pp. 1391-1396
- A central limit theorem for the length of the longest common subsequences in random words, Electronic Journal of Probability, Volume 28 (2023) no. none | DOI:10.1214/22-ejp894
- On the limiting law of the length of the longest common and increasing subsequences in random words with arbitrary distribution, Electronic Journal of Probability, Volume 26 (2021) no. none | DOI:10.1214/21-ejp612
- Lower bounds for moments of global scores of pairwise Markov chains, Stochastic Processes and their Applications, Volume 128 (2018) no. 5, p. 1678 | DOI:10.1016/j.spa.2017.08.009
- Non-normal Limiting Distribution for Optimal Alignment Scores of Strings in Binary Alphabets, Journal of Statistical Physics, Volume 168 (2017) no. 5, p. 1056 | DOI:10.1007/s10955-017-1835-6
- On the limiting law of the length of the longest common and increasing subsequences in random words, Stochastic Processes and their Applications, Volume 127 (2017) no. 5, p. 1676 | DOI:10.1016/j.spa.2016.09.005
- Closeness to the diagonal for longest common subsequences in random words, Electronic Communications in Probability, Volume 21 (2016) no. none | DOI:10.1214/16-ecp4029
- On the Order of the Central Moments of the Length of the Longest Common Subsequences in Random Words, High Dimensional Probability VII, Volume 71 (2016), p. 105 | DOI:10.1007/978-3-319-40519-3_5
- On the Variance of the Optimal Alignments Score for Binary Random Words and an Asymmetric Scoring Function, Journal of Statistical Physics, Volume 164 (2016) no. 3, p. 693 | DOI:10.1007/s10955-016-1549-1
- Multi-state Asymmetric Simple Exclusion Processes, Journal of Statistical Physics, Volume 158 (2015) no. 1, p. 158 | DOI:10.1007/s10955-014-1121-9
- Optimal alignments of longest common subsequences and their path properties, Bernoulli, Volume 20 (2014) no. 3 | DOI:10.3150/13-bej522
- Letter Change Bias and Local Uniqueness in Optimal Sequence Alignments, Journal of Statistical Physics, Volume 153 (2013) no. 3, p. 512 | DOI:10.1007/s10955-013-0819-4
- Asymptotics for the Length of the Longest Increasing Subsequence of a Binary Markov Random Word, Malliavin Calculus and Stochastic Analysis, Volume 34 (2013), p. 511 | DOI:10.1007/978-1-4614-5906-4_23
- Standard deviation of the longest common subsequence, The Annals of Probability, Volume 37 (2009) no. 3 | DOI:10.1214/08-aop436
- Thermodynamical Approach to the Longest Common Subsequence Problem, Journal of Statistical Physics, Volume 131 (2008) no. 6, p. 1103 | DOI:10.1007/s10955-008-9533-z
Cité par 14 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier