Comptes Rendus
Dynamical Systems
Further reduction of normal forms of formal maps
[Réduction supplémentaire des formes normales d'applications différentiables]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 10, pp. 657-660.

La réduction supplémentaire des formes normales classiques d'applications formelle est étudiée dans cette note. En utilisant des formules récursives pour le calcul de l'application obtenue par une transformation formelle tangente à l'identité, nous développons la notion de formes normales d'ordre N et d'ordre infini pour les applications formelles, et nous donnons des conditions suffisantes pour l'unicité de ces formes normales.

Further reduction for classical normal forms of formal maps is considered in this note. Based on a recursive formula for computing the transformed map of a formal map under a near identity formal transformation, we develop the concepts of Nth order normal forms and infinite order normal forms for formal maps, and give some sufficient conditions for uniqueness of normal forms of formal maps.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.10.005

Duo Wang 1 ; Min Zheng 1 ; Jianping Peng 1

1 LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
@article{CRMATH_2006__343_10_657_0,
     author = {Duo Wang and Min Zheng and Jianping Peng},
     title = {Further reduction of normal forms of formal maps},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {657--660},
     publisher = {Elsevier},
     volume = {343},
     number = {10},
     year = {2006},
     doi = {10.1016/j.crma.2006.10.005},
     language = {en},
}
TY  - JOUR
AU  - Duo Wang
AU  - Min Zheng
AU  - Jianping Peng
TI  - Further reduction of normal forms of formal maps
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 657
EP  - 660
VL  - 343
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2006.10.005
LA  - en
ID  - CRMATH_2006__343_10_657_0
ER  - 
%0 Journal Article
%A Duo Wang
%A Min Zheng
%A Jianping Peng
%T Further reduction of normal forms of formal maps
%J Comptes Rendus. Mathématique
%D 2006
%P 657-660
%V 343
%N 10
%I Elsevier
%R 10.1016/j.crma.2006.10.005
%G en
%F CRMATH_2006__343_10_657_0
Duo Wang; Min Zheng; Jianping Peng. Further reduction of normal forms of formal maps. Comptes Rendus. Mathématique, Volume 343 (2006) no. 10, pp. 657-660. doi : 10.1016/j.crma.2006.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.005/

[1] G. Chen; J. Della Dora Normal forms for differential maps near a fixed point, Numerical Algorithms, Volume 22 (1999), pp. 213-230

[2] H. Kokubu; H. Oka; D. Wang Linear grading function and further reduction of normal forms, J. Differential Equations, Volume 132 (1996), pp. 293-318

[3] J. Peng, Further reduction of normal forms and dynamics of a financial model, Ph.D. thesis, School of Mathematical Sciences, Peking University, 2004

[4] D. Wang, M. Zheng, J. Peng, Further reduction of normal forms and unique normal forms of smooth maps, Preprint, 2006

Cité par Sources :

Commentaires - Politique