[Topologie des cordes pour les lacets libres d'un champ]
On munit les groupes d'homologie du champ des lacets libres d'un champ orienté d'un produit et d'un coproduit induisant une structure d'algèbre de Frobenius. De plus, l'homologie en degrés décalés est une algèbre BV.
We prove that the homology groups of the free loop stack of an oriented stack are equipped with a canonical loop product and coproduct, which makes it into a Frobenius algebra. Moreover, the shifted homology admits a BV algebra structure.
Accepté le :
Publié le :
Kai Behrend 1 ; Grégory Ginot 2 ; Behrang Noohi 3 ; Ping Xu 4
@article{CRMATH_2007__344_4_247_0, author = {Kai Behrend and Gr\'egory Ginot and Behrang Noohi and Ping Xu}, title = {String topology for loop stacks}, journal = {Comptes Rendus. Math\'ematique}, pages = {247--252}, publisher = {Elsevier}, volume = {344}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2006.10.006}, language = {en}, }
Kai Behrend; Grégory Ginot; Behrang Noohi; Ping Xu. String topology for loop stacks. Comptes Rendus. Mathématique, Volume 344 (2007) no. 4, pp. 247-252. doi : 10.1016/j.crma.2006.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.006/
[1] K. Behrend, G. Ginot, B. Noohi, P. Xu, String product for inertia stacks, preprint
[2] K. Behrend, G. Ginot, B. Noohi, P. Xu, Frobenius structure for inertia stacks, preprint
[3] String topology | arXiv
[4] A polarized view of string topology, Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., vol. 308, 2004, pp. 127-154
[5] A homotopy theoretic realization of string topology, Math. Ann., Volume 324 (2002) no. 4, pp. 773-798
[6] Notes on string topology, String Topology and Cyclic Homology, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2006, pp. 1-95
[7] Orbifold string topology | arXiv
[8] Lie groupoids, sheaves and cohomology, Poisson Geometry, Deformation Quantisation and Group Representations, London Math. Soc. Lecture Note Ser., vol. 323, 2005, pp. 145-272
[9] Foundations of topological stacks, I | arXiv
Cité par Sources :
Commentaires - Politique