[Localisation des solutions pour un problème elliptique avec exposant critique de Sobolev]
On étudie l'existence et la multiplicité de solutions du problème
We study the existence and the multiplicity of solutions for the problem
Publié le :
Rejeb Hadiji 1 ; Riccardo Molle 2 ; Donato Passaseo 3 ; Habib Yazidi 1
@article{CRMATH_2006__343_11-12_725_0, author = {Rejeb Hadiji and Riccardo Molle and Donato Passaseo and Habib Yazidi}, title = {Localization of solutions for nonlinear elliptic problems with critical growth}, journal = {Comptes Rendus. Math\'ematique}, pages = {725--730}, publisher = {Elsevier}, volume = {343}, number = {11-12}, year = {2006}, doi = {10.1016/j.crma.2006.10.018}, language = {en}, }
TY - JOUR AU - Rejeb Hadiji AU - Riccardo Molle AU - Donato Passaseo AU - Habib Yazidi TI - Localization of solutions for nonlinear elliptic problems with critical growth JO - Comptes Rendus. Mathématique PY - 2006 SP - 725 EP - 730 VL - 343 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2006.10.018 LA - en ID - CRMATH_2006__343_11-12_725_0 ER -
%0 Journal Article %A Rejeb Hadiji %A Riccardo Molle %A Donato Passaseo %A Habib Yazidi %T Localization of solutions for nonlinear elliptic problems with critical growth %J Comptes Rendus. Mathématique %D 2006 %P 725-730 %V 343 %N 11-12 %I Elsevier %R 10.1016/j.crma.2006.10.018 %G en %F CRMATH_2006__343_11-12_725_0
Rejeb Hadiji; Riccardo Molle; Donato Passaseo; Habib Yazidi. Localization of solutions for nonlinear elliptic problems with critical growth. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 725-730. doi : 10.1016/j.crma.2006.10.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.018/
[1] Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., Volume 141 (1996), pp. 159-214
[2] Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381
[3] Elliptic equations with limiting Sobolev exponents – the impact of topology, Comm. Pure Appl. Math., Volume 39 (1986), p. S17-S39
[4] A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., Volume 88 (1983) no. 3, pp. 486-490
[5] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983) no. 4, pp. 437-477
[6] Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math., Volume 299 (1984), pp. 209-212
[7] R. Hadiji, H. Yazidi, Problem with critical Sobolev exponent and with weight, Chinese Ann. Math. Ser. B, in press
[8] R. Hadiji, R. Molle, D. Passaseo, H. Yazidi, in preparation
[9] On
[10] The concentration-compactness principle in the calculus of variations, The limit case, part 1 and part 2, Rev. Mat. Iberoamericana, Volume 1 (1985) no. 1, pp. 145-201 and 1 (2) (1985) 45–121
[11] Multibump solutions for a class of nonlinear elliptic problems, Calc. Var. Partial Differential Equations, Volume 7 (1998) no. 1, pp. 53-86
[12] Sur un problème variationnel non compact : l'effet de petits trous dans le domaine, C. R. Acad. Sci. Paris Sér. I Math., Volume 308 (1989), pp. 349-352
[13] The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990) no. 1, pp. 1-52
[14] Best constants in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372
[15] H. Yazidi, Etude de quelques EDP non linéaires sans compacité, Ph.D. Thesis, Université Paris 12 (2006)
- Weighted Choquard Equation Perturbed with Weighted Nonlocal Term, Differential Equations and Dynamical Systems, Volume 32 (2024) no. 2, p. 467 | DOI:10.1007/s12591-021-00579-3
- A system with weights and with critical Sobolev exponent, European Journal of Mathematics, Volume 9 (2023) no. 3 | DOI:10.1007/s40879-023-00650-z
- The Brezis–Nirenberg problem for systems involving divergence-form operators, Nonlinear Differential Equations and Applications NoDEA, Volume 30 (2023) no. 6 | DOI:10.1007/s00030-023-00882-8
- Normalized solutions of mass supercritical Schrödinger equations with potential, Communications in Partial Differential Equations, Volume 46 (2021) no. 9, p. 1729 | DOI:10.1080/03605302.2021.1893747
- Multiple positive bound state solutions for a critical Choquard equation, Discrete Continuous Dynamical Systems, Volume 41 (2021) no. 10, p. 4887 | DOI:10.3934/dcds.2021061
- Numerical solution of a critical Sobolev exponent problem with weight on 𝕊3, Journal of Taibah University for Science, Volume 15 (2021) no. 1, p. 240 | DOI:10.1080/16583655.2021.1953833
- Solutions of a weighted p-Laplacian critical Sobolev problem, Journal of Mathematical Analysis and Applications, Volume 487 (2020) no. 1, p. 123926 | DOI:10.1016/j.jmaa.2020.123926
- Existence of solutions of a non-linear eigenvalue problem with a variable weight, Journal of Differential Equations, Volume 266 (2019) no. 2-3, p. 1488 | DOI:10.1016/j.jde.2018.08.001
- The effect of a discontinuous weight for a critical Sobolev problem, Applicable Analysis, Volume 97 (2018) no. 14, p. 2544 | DOI:10.1080/00036811.2017.1376737
- Ground states of critical and supercritical problems of Brezis–Nirenberg type, Annali di Matematica Pura ed Applicata (1923 -), Volume 195 (2016) no. 5, p. 1787 | DOI:10.1007/s10231-015-0548-1
- Multiple solutions to anisotropic critical and supercritical problems in symmetric domains, Contributions to Nonlinear Elliptic Equations and Systems, Volume 86 (2015), p. 99 | DOI:10.1007/978-3-319-19902-3_8
- A non-linear problem involving a critical Sobolev exponent, Journal of Mathematical Analysis and Applications, Volume 396 (2012) no. 1, p. 98 | DOI:10.1016/j.jmaa.2012.06.001
Cité par 12 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier