Comptes Rendus
Partial Differential Equations
Localization of solutions for nonlinear elliptic problems with critical growth
[Localisation des solutions pour un problème elliptique avec exposant critique de Sobolev]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 725-730.

On étudie l'existence et la multiplicité de solutions du problème div(p(x)u)=u21+λu, u>0 dans Ω et u=0 sur ∂Ω dans le cas où l'ensemble de minima de p admet plusieurs composantes connexes. On s'intéresse également au cas où cet ensemble possède une seule composante connexe et une topologie complexe.

We study the existence and the multiplicity of solutions for the problem div(p(x)u)=u21+λu, u>0 in Ω and u=0 on ∂Ω, when the set of the minimizers for the weight p has multiple connected component. We study also the case where this set has one connected component and has complex topology.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.10.018

Rejeb Hadiji 1 ; Riccardo Molle 2 ; Donato Passaseo 3 ; Habib Yazidi 1

1 UFR des sciences et technologie, CNRS UMR 8050, université Paris 12, Val-de-Marne, 61, avenue du Général de Gaulle, 94010 Créteil, France
2 Dipartimento di Matematica Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1, 00133 Roma, Italy
3 Dipartimento di Matematica “E. De Giorgi”, Università di Lecce, P.O. Box 193, 73100 Lecce, Italy
@article{CRMATH_2006__343_11-12_725_0,
     author = {Rejeb Hadiji and Riccardo Molle and Donato Passaseo and Habib Yazidi},
     title = {Localization of solutions for nonlinear elliptic problems with critical growth},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {725--730},
     publisher = {Elsevier},
     volume = {343},
     number = {11-12},
     year = {2006},
     doi = {10.1016/j.crma.2006.10.018},
     language = {en},
}
TY  - JOUR
AU  - Rejeb Hadiji
AU  - Riccardo Molle
AU  - Donato Passaseo
AU  - Habib Yazidi
TI  - Localization of solutions for nonlinear elliptic problems with critical growth
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 725
EP  - 730
VL  - 343
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2006.10.018
LA  - en
ID  - CRMATH_2006__343_11-12_725_0
ER  - 
%0 Journal Article
%A Rejeb Hadiji
%A Riccardo Molle
%A Donato Passaseo
%A Habib Yazidi
%T Localization of solutions for nonlinear elliptic problems with critical growth
%J Comptes Rendus. Mathématique
%D 2006
%P 725-730
%V 343
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2006.10.018
%G en
%F CRMATH_2006__343_11-12_725_0
Rejeb Hadiji; Riccardo Molle; Donato Passaseo; Habib Yazidi. Localization of solutions for nonlinear elliptic problems with critical growth. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 725-730. doi : 10.1016/j.crma.2006.10.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.018/

[1] S. Alama; G. Tarantello Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., Volume 141 (1996), pp. 159-214

[2] A. Ambrosetti; P. Rabinowitz Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381

[3] H. Brezis Elliptic equations with limiting Sobolev exponents – the impact of topology, Comm. Pure Appl. Math., Volume 39 (1986), p. S17-S39

[4] H. Brezis; E. Lieb A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., Volume 88 (1983) no. 3, pp. 486-490

[5] H. Brezis; L. Nirenberg Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983) no. 4, pp. 437-477

[6] J.M. Coron Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math., Volume 299 (1984), pp. 209-212

[7] R. Hadiji, H. Yazidi, Problem with critical Sobolev exponent and with weight, Chinese Ann. Math. Ser. B, in press

[8] R. Hadiji, R. Molle, D. Passaseo, H. Yazidi, in preparation

[9] Y. Li On Δu=K(x)u5 in R3, Comm. Pure Appl. Math., Volume 46 (1993), pp. 303-340

[10] P.L. Lions The concentration-compactness principle in the calculus of variations, The limit case, part 1 and part 2, Rev. Mat. Iberoamericana, Volume 1 (1985) no. 1, pp. 145-201 and 1 (2) (1985) 45–121

[11] M. Musso; D. Passaseo Multibump solutions for a class of nonlinear elliptic problems, Calc. Var. Partial Differential Equations, Volume 7 (1998) no. 1, pp. 53-86

[12] O. Rey Sur un problème variationnel non compact : l'effet de petits trous dans le domaine, C. R. Acad. Sci. Paris Sér. I Math., Volume 308 (1989), pp. 349-352

[13] O. Rey The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990) no. 1, pp. 1-52

[14] G. Talenti Best constants in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372

[15] H. Yazidi, Etude de quelques EDP non linéaires sans compacité, Ph.D. Thesis, Université Paris 12 (2006)

  • Gurpreet Singh Weighted Choquard Equation Perturbed with Weighted Nonlocal Term, Differential Equations and Dynamical Systems, Volume 32 (2024) no. 2, p. 467 | DOI:10.1007/s12591-021-00579-3
  • Asma Benhamida; Rejeb Hadiji A system with weights and with critical Sobolev exponent, European Journal of Mathematics, Volume 9 (2023) no. 3 | DOI:10.1007/s40879-023-00650-z
  • Burton Brown; Mathew Gluck; Vince Guingona; Thomas Hammons; Miriam Parnes; Sean Pooley; Avery Schweitzer The Brezis–Nirenberg problem for systems involving divergence-form operators, Nonlinear Differential Equations and Applications NoDEA, Volume 30 (2023) no. 6 | DOI:10.1007/s00030-023-00882-8
  • Thomas Bartsch; Riccardo Molle; Matteo Rizzi; Gianmaria Verzini Normalized solutions of mass supercritical Schrödinger equations with potential, Communications in Partial Differential Equations, Volume 46 (2021) no. 9, p. 1729 | DOI:10.1080/03605302.2021.1893747
  • Claudianor O. Alves; Giovany M. Figueiredo; Riccardo Molle Multiple positive bound state solutions for a critical Choquard equation, Discrete Continuous Dynamical Systems, Volume 41 (2021) no. 10, p. 4887 | DOI:10.3934/dcds.2021061
  • Adel Almarashi; Idir Mechai; Ahmed Msmali; Habib Yazidi Numerical solution of a critical Sobolev exponent problem with weight on 𝕊3, Journal of Taibah University for Science, Volume 15 (2021) no. 1, p. 240 | DOI:10.1080/16583655.2021.1953833
  • Asma Benhamida; Habib Yazidi Solutions of a weighted p-Laplacian critical Sobolev problem, Journal of Mathematical Analysis and Applications, Volume 487 (2020) no. 1, p. 123926 | DOI:10.1016/j.jmaa.2020.123926
  • Rejeb Hadiji; François Vigneron Existence of solutions of a non-linear eigenvalue problem with a variable weight, Journal of Differential Equations, Volume 266 (2019) no. 2-3, p. 1488 | DOI:10.1016/j.jde.2018.08.001
  • Rejeb Hadiji; Sami Baraket; Habib Yazidi The effect of a discontinuous weight for a critical Sobolev problem, Applicable Analysis, Volume 97 (2018) no. 14, p. 2544 | DOI:10.1080/00036811.2017.1376737
  • Mónica Clapp; Angela Pistoia; Andrzej Szulkin Ground states of critical and supercritical problems of Brezis–Nirenberg type, Annali di Matematica Pura ed Applicata (1923 -), Volume 195 (2016) no. 5, p. 1787 | DOI:10.1007/s10231-015-0548-1
  • Mónica Clapp; Jorge Faya Multiple solutions to anisotropic critical and supercritical problems in symmetric domains, Contributions to Nonlinear Elliptic Equations and Systems, Volume 86 (2015), p. 99 | DOI:10.1007/978-3-319-19902-3_8
  • Soohyun Bae; Rejeb Hadiji; François Vigneron; Habib Yazidi A non-linear problem involving a critical Sobolev exponent, Journal of Mathematical Analysis and Applications, Volume 396 (2012) no. 1, p. 98 | DOI:10.1016/j.jmaa.2012.06.001

Cité par 12 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: