[Localisation des solutions pour un problème elliptique avec exposant critique de Sobolev]
On étudie l'existence et la multiplicité de solutions du problème , dans Ω et sur ∂Ω dans le cas où l'ensemble de minima de p admet plusieurs composantes connexes. On s'intéresse également au cas où cet ensemble possède une seule composante connexe et une topologie complexe.
We study the existence and the multiplicity of solutions for the problem , in Ω and on ∂Ω, when the set of the minimizers for the weight p has multiple connected component. We study also the case where this set has one connected component and has complex topology.
Publié le :
Rejeb Hadiji 1 ; Riccardo Molle 2 ; Donato Passaseo 3 ; Habib Yazidi 1
@article{CRMATH_2006__343_11-12_725_0, author = {Rejeb Hadiji and Riccardo Molle and Donato Passaseo and Habib Yazidi}, title = {Localization of solutions for nonlinear elliptic problems with critical growth}, journal = {Comptes Rendus. Math\'ematique}, pages = {725--730}, publisher = {Elsevier}, volume = {343}, number = {11-12}, year = {2006}, doi = {10.1016/j.crma.2006.10.018}, language = {en}, }
TY - JOUR AU - Rejeb Hadiji AU - Riccardo Molle AU - Donato Passaseo AU - Habib Yazidi TI - Localization of solutions for nonlinear elliptic problems with critical growth JO - Comptes Rendus. Mathématique PY - 2006 SP - 725 EP - 730 VL - 343 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2006.10.018 LA - en ID - CRMATH_2006__343_11-12_725_0 ER -
%0 Journal Article %A Rejeb Hadiji %A Riccardo Molle %A Donato Passaseo %A Habib Yazidi %T Localization of solutions for nonlinear elliptic problems with critical growth %J Comptes Rendus. Mathématique %D 2006 %P 725-730 %V 343 %N 11-12 %I Elsevier %R 10.1016/j.crma.2006.10.018 %G en %F CRMATH_2006__343_11-12_725_0
Rejeb Hadiji; Riccardo Molle; Donato Passaseo; Habib Yazidi. Localization of solutions for nonlinear elliptic problems with critical growth. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 725-730. doi : 10.1016/j.crma.2006.10.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.018/
[1] Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., Volume 141 (1996), pp. 159-214
[2] Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381
[3] Elliptic equations with limiting Sobolev exponents – the impact of topology, Comm. Pure Appl. Math., Volume 39 (1986), p. S17-S39
[4] A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., Volume 88 (1983) no. 3, pp. 486-490
[5] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983) no. 4, pp. 437-477
[6] Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math., Volume 299 (1984), pp. 209-212
[7] R. Hadiji, H. Yazidi, Problem with critical Sobolev exponent and with weight, Chinese Ann. Math. Ser. B, in press
[8] R. Hadiji, R. Molle, D. Passaseo, H. Yazidi, in preparation
[9] On in , Comm. Pure Appl. Math., Volume 46 (1993), pp. 303-340
[10] The concentration-compactness principle in the calculus of variations, The limit case, part 1 and part 2, Rev. Mat. Iberoamericana, Volume 1 (1985) no. 1, pp. 145-201 and 1 (2) (1985) 45–121
[11] Multibump solutions for a class of nonlinear elliptic problems, Calc. Var. Partial Differential Equations, Volume 7 (1998) no. 1, pp. 53-86
[12] Sur un problème variationnel non compact : l'effet de petits trous dans le domaine, C. R. Acad. Sci. Paris Sér. I Math., Volume 308 (1989), pp. 349-352
[13] The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990) no. 1, pp. 1-52
[14] Best constants in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372
[15] H. Yazidi, Etude de quelques EDP non linéaires sans compacité, Ph.D. Thesis, Université Paris 12 (2006)
Cité par Sources :
Commentaires - Politique