[Frames de Weyl–Heisenberg et fonctions d'Hermite]
Nous étudions les propriétés de frame de l' ensemble , où est une fonction de Hermite et Λ est un réseau dans . Nous donnons des conditions suffisantes sur la densité de Λ pour que la propriété de frame soit satisfaite. Un contre-exemple suggère que nos conditions sont aussi nécessaires. Les outils principaux sont des estimations de croissance pour la fonction σ de Weierstrass et un nouveau type d'interpolation dans l'espace de Bargmann–Fock.
We investigate Gabor frames based on a linear combination of Hermite functions . We derive sufficient conditions on the lattice such that the Gabor system is a frame. An example supports our conjecture that our conditions are sharp. The main tools are growth estimates for the Weierstrass σ-function and a new type of interpolation problem for entire functions on the Bargmann–Fock space.
Accepté le :
Publié le :
Karlheinz Gröchenig 1 ; Yurii Lyubarskii 2
@article{CRMATH_2007__344_3_157_0, author = {Karlheinz Gr\"ochenig and Yurii Lyubarskii}, title = {Gabor frames with {Hermite} functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {157--162}, publisher = {Elsevier}, volume = {344}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2006.12.013}, language = {en}, }
Karlheinz Gröchenig; Yurii Lyubarskii. Gabor frames with Hermite functions. Comptes Rendus. Mathématique, Volume 344 (2007) no. 3, pp. 157-162. doi : 10.1016/j.crma.2006.12.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.12.013/
[1] Elements of the Theory of Elliptic Functions, Amer. Math. Soc., Providence, RI, 1990
[2] On completeness of random exponentials in the Bargmann–Fock space, J. Math. Phys., Volume 42 (2001) no. 8, pp. 3754-3768
[3] The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, Volume 36 (1990) no. 5, pp. 961-1005
[4] Gabor time-frequency lattices and the Wexler–Raz identity, J. Fourier Anal. Appl., Volume 1 (1995) no. 4, pp. 437-478
[5] A Banach space of test functions for Gabor analysis, Gabor Analysis and Algorithms, Birkhäuser Boston, Boston, MA, 1998, pp. 123-170
[6] Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, NJ, 1989 (x+277 pp)
[7] Theory of communication, J. IEE (London), Volume 93 (1946) no. III, pp. 429-457
[8] Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001 (xvi+359 pp)
[9] The local growth of the power series: a survey of the Wiman–Valiron method, Canad. Math. Bull., Volume 17 (1974) no. 3, pp. 317-358
[10] Duality and biorthogonality for Weyl–Heisenberg frames, J. Fourier Anal. Appl., Volume 1 (1995) no. 4, pp. 403-436
[11] Hyperbolic secants yield Gabor frames, Appl. Comp. Harm. Anal. (2001)
[12] Frames in the Bargmann space of entire functions, Entire and Subharmonic Functions, Adv. Soviet Math., vol. 11, Amer. Math. Soc., Providence, RI, 1992, pp. 167-180
[13] Density theorems for sampling and interpolation in the Bargmann–Fock space. II, J. Reine Angew. Math., Volume 429 (1992), pp. 107-113
Cité par Sources :
Commentaires - Politique