Comptes Rendus
Numerical Analysis
Numerical simulation of a lid-driven cavity viscoelastic flow at high Weissenberg numbers
[Simulation numérique d'un écoulement viscoélastique dans une cavité entraînée pour des nombres de Weissenberg élevés]
Comptes Rendus. Mathématique, Volume 344 (2007) no. 4, pp. 283-286.

In this Note we present a finite element method for simulating the Stokes flow of an Oldroyd-B fluid in a lid-driven cavity, which is a stringent test problem at high Weissenberg numbers. The key considerations are: (i) the preservation of the positive definiteness of the conformation tensor at the discrete level; (ii) the use of a coarser mesh when discretizing the conformation tensor to lower the number of high frequency modes; and (iii) additional diffusion to smooth the high frequency modes. The methodologies with the above three features are found to be stable at high Weissenberg numbers.

Dans cette Note nous présentons une méthode d'éléments finis pour la simulation de l'écoulement d'un fluide viscoélastique de type Oldroyd-B dans une cavité entraînée par une vitesse imposée sur l'une de ses parois. Ce problème est un test modèle pour des nombres de Weissenberg élevés. Les caractéristiques principales de notre méthode sont : (i) la conservation du caractère défini positif du tenseur de conformation au niveau discret ; (ii) l'utilisation d'une maille grossière pour la discrétisation du tenseur de conformation afin de réduire le nombre de modes à haute fréquence ; et (iii) l'introduction d'une diffusion additionnelle pour lisser les modes à haute fréquence. La prise en compte de ces trois mécanismes permet d'obtenir des méthodes stables pour des nombres de Weissenberg élevés.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.12.014

Tsorng-Whay Pan 1 ; Jian Hao 1

1 University of Houston, Department of Mathematics, Houston, TX 77204-3476, USA
@article{CRMATH_2007__344_4_283_0,
     author = {Tsorng-Whay Pan and Jian Hao},
     title = {Numerical simulation of a lid-driven cavity viscoelastic flow at high {Weissenberg} numbers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {283--286},
     publisher = {Elsevier},
     volume = {344},
     number = {4},
     year = {2007},
     doi = {10.1016/j.crma.2006.12.014},
     language = {en},
}
TY  - JOUR
AU  - Tsorng-Whay Pan
AU  - Jian Hao
TI  - Numerical simulation of a lid-driven cavity viscoelastic flow at high Weissenberg numbers
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 283
EP  - 286
VL  - 344
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2006.12.014
LA  - en
ID  - CRMATH_2007__344_4_283_0
ER  - 
%0 Journal Article
%A Tsorng-Whay Pan
%A Jian Hao
%T Numerical simulation of a lid-driven cavity viscoelastic flow at high Weissenberg numbers
%J Comptes Rendus. Mathématique
%D 2007
%P 283-286
%V 344
%N 4
%I Elsevier
%R 10.1016/j.crma.2006.12.014
%G en
%F CRMATH_2007__344_4_283_0
Tsorng-Whay Pan; Jian Hao. Numerical simulation of a lid-driven cavity viscoelastic flow at high Weissenberg numbers. Comptes Rendus. Mathématique, Volume 344 (2007) no. 4, pp. 283-286. doi : 10.1016/j.crma.2006.12.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.12.014/

[1] F.P.T. Baaijens Mixed finite element methods for viscoelastic flow analysis: a review, J. Non-Newtonian Mech., Volume 79 (1998), pp. 361-385

[2] R. Fattal; R. Kupferman Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation, J. Non-Newtonian Fluid Mech., Volume 126 (2005), pp. 23-37

[3] R. Glowinski Finite element methods for incompressible viscous flow (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. IX, North-Holland, Amsterdam, 2003

[4] A. Lozinski; R.G. Owen An energy estimate for the Oldroyd-B model: theory and applications, J. Non-Newtonian Fluid Mech., Volume 112 (2003), pp. 161-176

[5] P. Pakdel; S.H. Spiegelberg; G.H. McKinley Cavity flows of elastic liquids: two-dimensional flows, Phys. Fluids, Volume 9 (1997), pp. 3123-3140

[6] P. Saramito Efficient simulation of nonlinear viscoelastic fluid flows, J. Non-Newtonian Fluid Mech., Volume 60 (1995), pp. 199-223

[7] R. Sureshkumar; A.N. Beris Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows, J. Non-Newtonian Fluid Mech., Volume 60 (1995), pp. 53-80

  • Xinghui Yong; Yunzhang Zhang; Xiaogang Du Analysis of Stabilized Crank‐Nicolson Leapfrog Time‐Stepping Scheme for the Peterlin Viscoelastic Fluid Model, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 9, p. 10189 | DOI:10.1002/mma.10878
  • J G Abuga; T Chinyoka Benchmark solutions of the stabilized computations of flows of fluids governed by the Rolie-Poly constitutive model, Journal of Physics Communications, Volume 4 (2020) no. 1, p. 015024 | DOI:10.1088/2399-6528/ab6ed2
  • Yunzhang Zhang Stability and convergence of first order time discrete linearized pressure correction projection method for the diffusive Peterlin viscoelastic model, Applied Numerical Mathematics, Volume 139 (2019), p. 93 | DOI:10.1016/j.apnum.2018.12.011
  • Puyang Gao; Jie Ouyang; Wen Zhou Coupling of finite element method and discontinuous Galerkin method to simulate viscoelastic flows, International Journal for Numerical Methods in Fluids, Volume 86 (2018) no. 6, p. 414 | DOI:10.1002/fld.4461
  • Mária Lukáčová ‐ Medvid'ová; Hirofumi Notsu; Bangwei She Energy dissipative characteristic schemes for the diffusive Oldroyd‐B viscoelastic fluid, International Journal for Numerical Methods in Fluids, Volume 81 (2016) no. 9, p. 523 | DOI:10.1002/fld.4195
  • I. G. Donev; B. D. Reddy Time‐dependent finite element simulations of a shear‐thinning viscoelastic fluid with application to blood flow, International Journal for Numerical Methods in Fluids, Volume 75 (2014) no. 9, p. 668 | DOI:10.1002/fld.3914
  • Florian Habla; Ming Wei Tan; Johannes Haßlberger; Olaf Hinrichsen Numerical simulation of the viscoelastic flow in a three-dimensional lid-driven cavity using the log-conformation reformulation in OpenFOAM®, Journal of Non-Newtonian Fluid Mechanics, Volume 212 (2014), p. 47 | DOI:10.1016/j.jnnfm.2014.08.005
  • H. ASADI; K. JAVAHERDEH; S. RAMEZANI FINITE ELEMENT SIMULATION OF MICROPOLAR FLUID FLOW IN THE LID-DRIVEN SQUARE CAVITY, International Journal of Applied Mechanics, Volume 05 (2013) no. 04, p. 1350045 | DOI:10.1142/s1758825113500452
  • Simon Haque; Iman Lashgari; Flavio Giannetti; Luca Brandt Stability of fluids with shear-dependent viscosity in the lid-driven cavity, Journal of Non-Newtonian Fluid Mechanics, Volume 173-174 (2012), p. 49 | DOI:10.1016/j.jnnfm.2012.02.004
  • Alex Liberzon On the effects of dilute polymers on driven cavity turbulent flows, International Journal of Heat and Fluid Flow, Volume 32 (2011) no. 6, p. 1129 | DOI:10.1016/j.ijheatfluidflow.2011.08.005
  • A. M. AFONSO; P. J. OLIVEIRA; F. T. PINHO; M. A. ALVES Dynamics of high-Deborah-number entry flows: a numerical study, Journal of Fluid Mechanics, Volume 677 (2011), p. 272 | DOI:10.1017/jfm.2011.84
  • Tsorng-Whay Pan; Jian Hao; Roland Glowinski Positive Definiteness Preserving Approaches for Viscoelastic Flow of Oldroyd-B Fluids, Numerical Methods for Non-Newtonian Fluids, Volume 16 (2011), p. 433 | DOI:10.1016/b978-0-444-53047-9.00005-8
  • H. Damanik; J. Hron; A. Ouazzi; S. Turek A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems, Journal of Non-Newtonian Fluid Mechanics, Volume 165 (2010) no. 19-20, p. 1105 | DOI:10.1016/j.jnnfm.2010.05.008
  • A. Afonso; P.J. Oliveira; F.T. Pinho; M.A. Alves The log-conformation tensor approach in the finite-volume method framework, Journal of Non-Newtonian Fluid Mechanics, Volume 157 (2009) no. 1-2, p. 55 | DOI:10.1016/j.jnnfm.2008.09.007

Cité par 14 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: