[Un théorème d'existence pour un modèle couplé 2D de Saint-Venant et de sédimentation]
Nous présentons un théorème d'existence d'un modèle bidimensionnel de sédimentation composé d'un système de Saint-Venant et d'une équation de transport de sédiment. Nous résolvons un problème de dimension finie utilisant un théorème de point fixe de Brouwer. Nous montrons que les limites des suites de solutions de ce problème de dimension finie satisfont les équations du modèle.
We present an existence theorem of a two-dimensional sedimentation model coupling a shallow-water system with a sediment transport equation. A finite dimensional problem is solved using a Brouwer fix point theorem. We prove that the limits of the resulting solution sequences satisfy the model equations.
Accepté le :
Publié le :
Babacar Toumbou 1, 2 ; Daniel Y. Le Roux 1 ; Abdou Sene 2
@article{CRMATH_2007__344_7_443_0, author = {Babacar Toumbou and Daniel Y. Le Roux and Abdou Sene}, title = {An existence theorem for a {2-D} coupled sedimentation shallow-water model}, journal = {Comptes Rendus. Math\'ematique}, pages = {443--446}, publisher = {Elsevier}, volume = {344}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.01.026}, language = {en}, }
TY - JOUR AU - Babacar Toumbou AU - Daniel Y. Le Roux AU - Abdou Sene TI - An existence theorem for a 2-D coupled sedimentation shallow-water model JO - Comptes Rendus. Mathématique PY - 2007 SP - 443 EP - 446 VL - 344 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2007.01.026 LA - en ID - CRMATH_2007__344_7_443_0 ER -
Babacar Toumbou; Daniel Y. Le Roux; Abdou Sene. An existence theorem for a 2-D coupled sedimentation shallow-water model. Comptes Rendus. Mathématique, Volume 344 (2007) no. 7, pp. 443-446. doi : 10.1016/j.crma.2007.01.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.01.026/
[1] Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., Volume 238 (2003), pp. 211-223
[2] An unstructured grid morphodynamic model with a discontinuous Galerkin method for bed evolution, Ocean Modelling, Volume 15 (2006), pp. 71-89
[3] Coupling between shallow water and solute flow equations: analysis and management of source terms in 2D, Int. J. Numer. Methods Fluids, Volume 49 (2005), pp. 267-299
[4] Simulating offshore sand waves, Coastal Engrg., Volume 53 (2006), pp. 265-275
[5] Un théorème d'existence de solutions d'un problème de shallow water, Arch. Rational Mech. Anal., Volume 130 (1995), pp. 183-204
Cité par Sources :
Commentaires - Politique