Let Ω be a class of groups. A group is said to be minimal non-Ω if it is not an Ω-group, while all its proper subgroups belong to Ω. In this Note we prove that a minimal non-(torsion-by-nilpotent) (respectively, non-((locally finite)-by-nilpotent)) group G is a finitely generated perfect group which has no proper subgroup of finite index and such that is an infinite simple group, where stands for the Frattini subgroup of G.
Soit Ω une classe de groupes. Un groupe est dit minimal non-Ω s'il n'est pas un Ω-groupe alors que tous ses sous-groupes propres le sont. Dans cette Note, nous prouvons que si G est un groupe minimal non-(périodique-par-nilpotent) (respectivement, non-((localement fini)-par-nilpotent)), alors G est un groupe parfait de type fini qui n'admet pas de sous-groupe propre d'indice fini et tel que est un groupe simple infini, où désigne le sous-groupe de Frattini de G.
Accepted:
Published online:
Nadir Trabelsi 1
@article{CRMATH_2007__344_6_353_0, author = {Nadir Trabelsi}, title = {On minimal non-(torsion-by-nilpotent) and non-((locally finite)-by-nilpotent) groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {353--356}, publisher = {Elsevier}, volume = {344}, number = {6}, year = {2007}, doi = {10.1016/j.crma.2007.02.009}, language = {en}, }
Nadir Trabelsi. On minimal non-(torsion-by-nilpotent) and non-((locally finite)-by-nilpotent) groups. Comptes Rendus. Mathématique, Volume 344 (2007) no. 6, pp. 353-356. doi : 10.1016/j.crma.2007.02.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.02.009/
[1] Nilpotent-by-Chernikov, J. London Math. Soc., Volume 61 (2000), pp. 412-422
[2] On minimal conditions related to Miller–Moreno type groups, Rend. Sem. Mat. Univ. Padova, Volume 69 (1983), pp. 153-168
[3] Groups with many polycyclic-by-nilpotent subgroups, Ricerche Mat., Volume 48 (1999), pp. 361-378
[4] Groups with many nilpotent subgroups, Arch. Math., Volume 15 (1964), pp. 241-250
[5] An infinite simple torsion-free Noetherian group, Izv. Akad. Nauk SSSR Ser. Mat., Volume 43 (1979), pp. 1328-1393
[6] Minimal non-CC groups, Comm. Algebra, Volume 16 (1988), pp. 1231-1242
[7] Finiteness Conditions and Generalized Soluble Groups, Springer-Verlag, 1972
[8] Groups with few non-nilpotent subgroups, Glasgow Math. J., Volume 39 (1997), pp. 141-151
[9] N. Trabelsi, Locally graded groups with few non-(torsion-by-nilpotent) subgroups, Ischia Group Theory 2006, World Sci. Publ., in press
[10] Groups whose proper subgroups are finite-by-nilpotent, Arch. Math., Volume 66 (1996), pp. 353-359
[11] Stably nilpotent groups, Mat. Zametki, Volume 2 (1967), pp. 337-346
Cited by Sources:
Comments - Policy