Comptes Rendus
Numerical Analysis
Optimal transport, shape optimization and global minimization
[Transport optimal généralisé, optimisation de formes et minimisation globale]
Comptes Rendus. Mathématique, Volume 344 (2007) no. 9, pp. 591-596.

Nous présentons la résolution de problème de transport optimal généralisé comme solution d'une minimisation globale basée sur la solution de problèmes à valeurs aux limites. On s'intéresse au cas de second membre à signe variable dans l'équation de Monge–Ampère, avec comme application l'optimisation de formes de surfaces à courbure donnée. Les problèmes ont toujours des minima locaux mais l'optimum global est unique.

We present the numerical solution of general optimal transport problems through global minimization formulated as solution of boundary value problems. The paper is not on optimal transport but aims to show that the optimization problem behind needs global solutions. One gives also interest to the variable sign right-hand-side case with application to shape optimization for surfaces at given curvature. Both the positive and variable sign problems have local minima, but have unique global solution.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.03.015

Bijan Mohammadi 1

1 Institut de mathématiques et de modélisation de Montpellier, Université Montpellier II, CC51, 34095 Montpellier, France
@article{CRMATH_2007__344_9_591_0,
     author = {Bijan Mohammadi},
     title = {Optimal transport, shape optimization and global minimization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {591--596},
     publisher = {Elsevier},
     volume = {344},
     number = {9},
     year = {2007},
     doi = {10.1016/j.crma.2007.03.015},
     language = {en},
}
TY  - JOUR
AU  - Bijan Mohammadi
TI  - Optimal transport, shape optimization and global minimization
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 591
EP  - 596
VL  - 344
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2007.03.015
LA  - en
ID  - CRMATH_2007__344_9_591_0
ER  - 
%0 Journal Article
%A Bijan Mohammadi
%T Optimal transport, shape optimization and global minimization
%J Comptes Rendus. Mathématique
%D 2007
%P 591-596
%V 344
%N 9
%I Elsevier
%R 10.1016/j.crma.2007.03.015
%G en
%F CRMATH_2007__344_9_591_0
Bijan Mohammadi. Optimal transport, shape optimization and global minimization. Comptes Rendus. Mathématique, Volume 344 (2007) no. 9, pp. 591-596. doi : 10.1016/j.crma.2007.03.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.03.015/

[1] H. Attouch; R. Cominetti A dynamical approach to convex minimization coupling approximation with the steepest descent method, J. Differential Equations (1996), pp. 128-132

[2] Y. Brenier; J.-D. Benamou A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem, Numer. Math., Volume 84 (2000) no. 3, pp. 375-393

[3] G. Carlier; F. Santambrogio A variational model for urban planning with traffic congestion, ESAIM Control Optim. Calc. Var., Volume 11 (2005), pp. 595-613

[4] E. Dean; R. Glowinski Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 887-892

[5] M. Fortin; R. Glowinski Augmented Lagrangian Methods. Applications to the Numerical Solution of Boundary Value Problems, Studies in Mathematics and its Applications, vol. 15, North-Holland, 1983

[6] B. Ivorra; D. Hertzog; B. Mohammadi; J.F. Santiago Global optimization for the design of fast microfluidic protein folding devices, Int. J. Numer. Meth. Engrg. (2006), pp. 26-36

[7] B. Ivorra; B. Mohammadi; A. Ramos Semi-deterministic global optimization method and application to the control of Burgers equation, JOTA, Volume 135 (2007) no. 1

[8] L.V. Kantorovich On a problem of Monge, Uspekhi Mat. Nauk, Volume 3 (1948), pp. 225-226

[9] G. Loeper; F. Rapetti Numerical solution of the Monge–Ampère equation by a Newton's algorithm, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 319-324

[10] C. Vilani Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, Amer. Math. Soc., 2003

  • Hao Liu; Shingyu Leung; Jianliang Qian Operator-Splitting/Finite Element Methods for the Minkowski Problem, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 5, p. A3230 | DOI:10.1137/23m1590779
  • Jérémie Brieussel; Thibault Godin; Bijan Mohammadi Numerical upper bounds on growth of automaton groups, International Journal of Algebra and Computation, Volume 32 (2022) no. 01, p. 159 | DOI:10.1142/s0218196722500072
  • Roland Glowinski; Hao Liu; Shingyu Leung; Jianliang Qian A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation, Journal of Scientific Computing, Volume 79 (2019) no. 1, p. 1 | DOI:10.1007/s10915-018-0839-y
  • Hao Liu; Roland Glowinski; Shingyu Leung; Jianliang Qian A Finite Element/Operator-Splitting Method for the Numerical Solution of the Three Dimensional Monge–Ampère Equation, Journal of Scientific Computing, Volume 81 (2019) no. 3, p. 2271 | DOI:10.1007/s10915-019-01080-4
  • Gerard Awanou On Standard Finite Difference Discretizations of the Elliptic Monge–Ampère Equation, Journal of Scientific Computing, Volume 69 (2016) no. 2, p. 892 | DOI:10.1007/s10915-016-0220-y
  • Gerard Awanou Spline element method for Monge–Ampère equations, BIT Numerical Mathematics, Volume 55 (2015) no. 3, p. 625 | DOI:10.1007/s10543-014-0524-y
  • Gerard Awanou Isogeometric Method for the Elliptic Monge-Ampère Equation, Approximation Theory XIV: San Antonio 2013, Volume 83 (2014), p. 1 | DOI:10.1007/978-3-319-06404-8_1
  • Alexandre Caboussat On the Numerical Solution of the Dirichlet Problem for the Elliptic (σ2) ( σ 2 ) Equation, Modeling, Simulation and Optimization for Science and Technology, Volume 34 (2014), p. 23 | DOI:10.1007/978-94-017-9054-3_2
  • Alexandre Caboussat; Roland Glowinski; Danny C. Sorensen A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two, ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, p. 780 | DOI:10.1051/cocv/2012033

Cité par 9 documents. Sources : Crossref

Commentaires - Politique