[Transport optimal généralisé, optimisation de formes et minimisation globale]
Nous présentons la résolution de problème de transport optimal généralisé comme solution d'une minimisation globale basée sur la solution de problèmes à valeurs aux limites. On s'intéresse au cas de second membre à signe variable dans l'équation de Monge–Ampère, avec comme application l'optimisation de formes de surfaces à courbure donnée. Les problèmes ont toujours des minima locaux mais l'optimum global est unique.
We present the numerical solution of general optimal transport problems through global minimization formulated as solution of boundary value problems. The paper is not on optimal transport but aims to show that the optimization problem behind needs global solutions. One gives also interest to the variable sign right-hand-side case with application to shape optimization for surfaces at given curvature. Both the positive and variable sign problems have local minima, but have unique global solution.
Accepté le :
Publié le :
Bijan Mohammadi 1
@article{CRMATH_2007__344_9_591_0, author = {Bijan Mohammadi}, title = {Optimal transport, shape optimization and global minimization}, journal = {Comptes Rendus. Math\'ematique}, pages = {591--596}, publisher = {Elsevier}, volume = {344}, number = {9}, year = {2007}, doi = {10.1016/j.crma.2007.03.015}, language = {en}, }
Bijan Mohammadi. Optimal transport, shape optimization and global minimization. Comptes Rendus. Mathématique, Volume 344 (2007) no. 9, pp. 591-596. doi : 10.1016/j.crma.2007.03.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.03.015/
[1] A dynamical approach to convex minimization coupling approximation with the steepest descent method, J. Differential Equations (1996), pp. 128-132
[2] A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem, Numer. Math., Volume 84 (2000) no. 3, pp. 375-393
[3] A variational model for urban planning with traffic congestion, ESAIM Control Optim. Calc. Var., Volume 11 (2005), pp. 595-613
[4] Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 887-892
[5] Augmented Lagrangian Methods. Applications to the Numerical Solution of Boundary Value Problems, Studies in Mathematics and its Applications, vol. 15, North-Holland, 1983
[6] Global optimization for the design of fast microfluidic protein folding devices, Int. J. Numer. Meth. Engrg. (2006), pp. 26-36
[7] Semi-deterministic global optimization method and application to the control of Burgers equation, JOTA, Volume 135 (2007) no. 1
[8] On a problem of Monge, Uspekhi Mat. Nauk, Volume 3 (1948), pp. 225-226
[9] Numerical solution of the Monge–Ampère equation by a Newton's algorithm, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 319-324
[10] Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, Amer. Math. Soc., 2003
- Operator-Splitting/Finite Element Methods for the Minkowski Problem, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 5, p. A3230 | DOI:10.1137/23m1590779
- Numerical upper bounds on growth of automaton groups, International Journal of Algebra and Computation, Volume 32 (2022) no. 01, p. 159 | DOI:10.1142/s0218196722500072
- A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation, Journal of Scientific Computing, Volume 79 (2019) no. 1, p. 1 | DOI:10.1007/s10915-018-0839-y
- A Finite Element/Operator-Splitting Method for the Numerical Solution of the Three Dimensional Monge–Ampère Equation, Journal of Scientific Computing, Volume 81 (2019) no. 3, p. 2271 | DOI:10.1007/s10915-019-01080-4
- On Standard Finite Difference Discretizations of the Elliptic Monge–Ampère Equation, Journal of Scientific Computing, Volume 69 (2016) no. 2, p. 892 | DOI:10.1007/s10915-016-0220-y
- Spline element method for Monge–Ampère equations, BIT Numerical Mathematics, Volume 55 (2015) no. 3, p. 625 | DOI:10.1007/s10543-014-0524-y
- Isogeometric Method for the Elliptic Monge-Ampère Equation, Approximation Theory XIV: San Antonio 2013, Volume 83 (2014), p. 1 | DOI:10.1007/978-3-319-06404-8_1
- On the Numerical Solution of the Dirichlet Problem for the Elliptic
( σ 2 ) Equation, Modeling, Simulation and Optimization for Science and Technology, Volume 34 (2014), p. 23 | DOI:10.1007/978-94-017-9054-3_2 - A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two, ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, p. 780 | DOI:10.1051/cocv/2012033
Cité par 9 documents. Sources : Crossref
Commentaires - Politique