[Hamilton–Jacobi equations related with differential games with supremum cost]
In this Note we present a study of the existence and uniqueness to discontinuous viscosity solutions of Hamilton–Jacobi PDE related with differential games with supremum cost.
Cette Note est consacrée à l'existence et l'unicité des solutions de viscosité discontinues d'une EDP du type Hamilton–Jacobi liée à des problèmes de jeux différentiels avec coût de type supremum.
Accepted:
Published online:
Oana-Silvia Serea 1
@article{CRMATH_2007__344_12_743_0, author = {Oana-Silvia Serea}, title = {\'Equations {d'Hamilton{\textendash}Jacobi} li\'ees aux jeux diff\'erentiels avec co\^ut de type supremum}, journal = {Comptes Rendus. Math\'ematique}, pages = {743--748}, publisher = {Elsevier}, volume = {344}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.05.002}, language = {fr}, }
Oana-Silvia Serea. Équations d'Hamilton–Jacobi liées aux jeux différentiels avec coût de type supremum. Comptes Rendus. Mathématique, Volume 344 (2007) no. 12, pp. 743-748. doi : 10.1016/j.crma.2007.05.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.002/
[1] Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser, Boston, 1997
[2] Discontinuous solutions of deterministic optimal stopping time problems, RAIRO, Modélisation Math. Anal. Numér., Volume 21 (1987), pp. 557-579
[3] Solutions de viscosité des équations de Hamilton–Jacobi, Springer, Paris, 1994
[4] Differential games with maximum cost, Nonlinear Anal., Volume 14 (1990) no. 11, pp. 971-989
[5] The Bellman equation for minimizing the maximum cost, Nonlinear Anal., Volume 3 (1989), pp. 1067-1090
[6] Semicontinuous viscosity solutions of Hamilton–Jacobi equations with convex Hamiltonian, Comm. Partial Differential Equations, Volume 15 (1990), pp. 1713-1742
[7] Semicontinuous solutions for Hamilton–Jacobi equations and the -control problem, Appl. Math. Optim., Volume 34 (1996), pp. 325-360
[8] The existence of value in differential games, Mem. Amer. Math. Soc. (1972), p. 126
[9] Differential games and representation formulas for solutions of Hamilton–Jacobi equations, Indiana Univ. Math. J., Volume 33 (1984), pp. 773-797
[10] Lower semicontinuous solutions of the Bellman equation, SIAM J. Control Optim., Volume 31 (1993), pp. 257-272
[11] Value function for differential games and control systems with discontinuous terminal cost, SIAM J. Control Optim., Volume 39 (2001) no. 5, pp. 1485-1498
[12] Viability with a target: Theory and applications (B. Cheshankov; M. Todorov, eds.), Applications of Mathematical Engineering, Heron Press, Sofia, 1998, pp. 47-58
[13] Discontinuous differential games and control systems with supremum cost, J. Math. Appl., Volume 270 (2002), pp. 519-542
[14] Generalized of First-Order PDEs the Dynamical Optimization Perspective, Birkhäuser, Boston, 1995
Cited by Sources:
Comments - Policy