We will show that if a dynamical system has enough constants of motion then a Moser–Weinstein type theorem can be applied for proving the existence of periodic orbits in the case when the linearized system is degenerate.
On va montrer que si un système dynamique a assez d'intégrales premières, alors on peut utiliser un théorème de type Moser–Weinstein pour prouver l'existence d'orbites périodiques, même si le système linéarisé associé est dégénéré.
Accepted:
Published online:
Petre Birtea 1; Mircea Puta 1; Răzvan Micu Tudoran 1
@article{CRMATH_2007__344_12_779_0, author = {Petre Birtea and Mircea Puta and R\u{a}zvan Micu Tudoran}, title = {Periodic orbits in the case of a zero eigenvalue}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--784}, publisher = {Elsevier}, volume = {344}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.05.003}, language = {en}, }
Petre Birtea; Mircea Puta; Răzvan Micu Tudoran. Periodic orbits in the case of a zero eigenvalue. Comptes Rendus. Mathématique, Volume 344 (2007) no. 12, pp. 779-784. doi : 10.1016/j.crma.2007.05.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.003/
[1] Integrable Systems, Encyclopedia of Math. Sci., vol. 4, Springer-Verlag, Berlin, 1990, pp. 173-280
[2] Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse, Volume 2 (1907), pp. 203-474
[3] Periodic orbits and a theorem by Alan Weinstein, Comm. Pure Appl. Math., Volume 29 (1976), pp. 727-747
[4] Normal modes for non-linear Hamiltonian systems, Invent. Math., Volume 20 (1973), pp. 47-57
Cited by Sources:
Comments - Policy