[Un Théorème de type Bismut pour les semi-groupes de la chaleur sous-elliptiques]
Given a general second order subelliptic differential operator
Étant donné un opérateur sous-elliptique
Accepté le :
Publié le :
Fabrice Baudoin 1
@article{CRMATH_2007__344_12_765_0, author = {Fabrice Baudoin}, title = {A {Bismut} type theorem for subelliptic heat semigroups}, journal = {Comptes Rendus. Math\'ematique}, pages = {765--768}, publisher = {Elsevier}, volume = {344}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.05.005}, language = {en}, }
Fabrice Baudoin. A Bismut type theorem for subelliptic heat semigroups. Comptes Rendus. Mathématique, Volume 344 (2007) no. 12, pp. 765-768. doi : 10.1016/j.crma.2007.05.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.005/
[1] An Introduction to the Geometry of Stochastic Flows, Imperial College Press, 2004
[2] The Atiyah–Singer theorems: A probabilistic approach, Part I, J. Func. Anal., Volume 57 (1984) Part II: 57 (1984) 329–348
- A horizontal Chern–Gauss–Bonnet formula on totally geodesic foliations, Annals of Global Analysis and Geometry, Volume 61 (2022) no. 4, p. 759 | DOI:10.1007/s10455-022-09827-3
- Stochastic Differential Equations Driven by Loops, XI Symposium on Probability and Stochastic Processes, Volume 69 (2015), p. 59 | DOI:10.1007/978-3-319-13984-5_3
- Brownian Chen series and Atiyah–Singer theorem, Journal of Functional Analysis, Volume 254 (2008) no. 2, p. 301 | DOI:10.1016/j.jfa.2007.09.022
Cité par 3 documents. Sources : Crossref
Commentaires - Politique