We present a Cosserat-based 3D–1D dimensional reduction for the viscoelastic finite strain model introduced by P. Neff. The reduced 1D model preserves observer invariance. We prove the existence and uniqueness of the solution of the reduced coupled minimization/evolution problem.
Nous présentons une réduction 3D–1D pour le modèle viscoélastique en grandes déformations introduit par P. Neff. Cette réduction est effectuée à l'aide d'un Ansatz de Cosserat. Le problème unidimensionnel couplé minimisation/évolution satisfait le principe d'indifférence matérielle et admet une unique solution.
Accepted:
Published online:
Joëlle Beyrouthy 1, 2
@article{CRMATH_2007__345_4_239_0, author = {Jo\"elle Beyrouthy}, title = {R\'eduction {3D{\textendash}1D} d'un mod\`ele visco\'elastique en grandes d\'eformations}, journal = {Comptes Rendus. Math\'ematique}, pages = {239--243}, publisher = {Elsevier}, volume = {345}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2007.06.027}, language = {fr}, }
Joëlle Beyrouthy. Réduction 3D–1D d'un modèle viscoélastique en grandes déformations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 4, pp. 239-243. doi : 10.1016/j.crma.2007.06.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.027/
[1] Nonlinear Problems of Elasticity, Applied Mathematical Sciences, vol. 107, Springer, New York, 2005
[2] Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988
[3] Finite multiplicative plasticity for small elastic strains with linear balance equations and grain boundary relaxation, Contin. Mech. Thermodyn., Volume 15 (2003) no. 2, pp. 161-195
[4] Local existence and uniqueness for a geometrically exact membrane-plate with viscoelastic transverse shear resistance, Math. Methods Appl. Sci., Volume 28 (2005) no. 9, pp. 1031-1060
[5] A geometrically exact viscoplastic membrane-shell with viscoelastic transverse shear resistance avoiding degeneracy in the thin-shell limit. Part I: The viscoelastic membrane-plate, Z. Angew. Math. Phys., Volume 56 (2005) no. 1, pp. 148-182
Cited by Sources:
Comments - Policy