Comptes Rendus
Combinatorics
On critical kernels
[Sur les noyaux critiques]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 363-367.

Nous proposons une méthode pour rétracter homotopiquement des complexes simpliciaux. Pour cela nous introduisons la notion de face essentielle, et celle de noyau d'une cellule. Nous définissons alors le noyau critique d'un complexe. Notre principal résultat est que le noyau critique d'un complexe X est une rétraction homotopique de X. Nous généralisons ce résultat en donnant une condition nécessaire et suffisante qui caractérise une certaine classe de sous-complexes de X qui contiennent le noyau critique de X. En particulier, tout complexe qui appartient à cette classe est homotopiquement équivalent à X.

We propose a method for collapsing simplicial complexes. For that purpose, we introduce the notion of an essential face, and the one of a core of a cell. Then, we define the critical kernel of a complex. Our main result is that the critical kernel of a given complex X is a collapse of X. We extend this result by giving a necessary and sufficient condition which characterizes a certain class of subcomplexes of X which contain the critical kernel of X. In particular, any complex which belongs to this class is homotopy equivalent to X.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.09.001

Gilles Bertrand 1

1 IGM, Unité mixte de recherche CNRS-UMLV-ESIEE UMR 8049, Laboratoire A2SI, Groupe ESIEE, Cité Descartes, BP 99, 93162 Noisy-le-Grand cedex, France
@article{CRMATH_2007__345_7_363_0,
     author = {Gilles Bertrand},
     title = {On critical kernels},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {363--367},
     publisher = {Elsevier},
     volume = {345},
     number = {7},
     year = {2007},
     doi = {10.1016/j.crma.2007.09.001},
     language = {en},
}
TY  - JOUR
AU  - Gilles Bertrand
TI  - On critical kernels
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 363
EP  - 367
VL  - 345
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2007.09.001
LA  - en
ID  - CRMATH_2007__345_7_363_0
ER  - 
%0 Journal Article
%A Gilles Bertrand
%T On critical kernels
%J Comptes Rendus. Mathématique
%D 2007
%P 363-367
%V 345
%N 7
%I Elsevier
%R 10.1016/j.crma.2007.09.001
%G en
%F CRMATH_2007__345_7_363_0
Gilles Bertrand. On critical kernels. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 363-367. doi : 10.1016/j.crma.2007.09.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.001/

[1] G. Bertrand On P-simple points, C. R. Acad. Sci. Paris, Ser. I, Volume 321 (1995), pp. 1077-1084

[2] G. Bertrand, M. Couprie, Two-dimensional parallel thinning algorithms based on critical kernels, Internal Report, Université de Marne-la-Vallée, IGM2006-02, also submitted for publication, 2006

[3] G. Bertrand; M. Couprie Three-Dimensional Parallel Thinning Algorithms Based on Critical Kernels, Lecture Notes in Computer Science, vol. 4245, 2006 (pp. 580–591)

[4] M.M. Cohen A Course in Simple-Homotopy Theory, Springer-Verlag, 1973

[5] P. Giblin Graphs, Surfaces and Homology, Chapman and Hall, 1981

[6] R. Klette; A. Rosenfeld Digital Geometry, Geometric Methods for Digital Picture Analysis, Morgan Kaufmann, 2006

[7] T.Y. Kong On topology preservation in 2-D and 3-D thinning, Int. J. Pattern Recognition and Artificial Intelligence, Volume 9 (1995), pp. 813-844

[8] T.Y. Kong Topology-preserving deletion of 1's from 2-, 3- and 4-dimensional binary images, Lecture Notes in Computer Science, vol. 1347, 1997, pp. 3-18

[9] J.H.C. Whitehead Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc., Volume 45 (1939) no. 2, pp. 243-327

Cité par Sources :

Commentaires - Politique