[Inéquations variationnelles dégénérescents anisotropes avec données dans
Dans cette Note nous introduisons les notions de T-solution et T-solution translatante des inéquations variationnelles correspondant à un opérateur non linéair dégénérescent anisotrope elliptique, un ensemble de contraintes d'une classe suffisament large et le second membre dans
In this Note we introduce notions of T-solution and shift T-solution of variational inequalities corresponding to a nonlinear degenerate anisotropic elliptic operator, a set of constraints of a sufficiently large class and an
Accepté le :
Publié le :
Alexander A. Kovalevsky 1 ; Yuliya S. Gorban 2
@article{CRMATH_2007__345_8_441_0, author = {Alexander A. Kovalevsky and Yuliya S. Gorban}, title = {Degenerate anisotropic variational inequalities with $ {L}^{1}$-data}, journal = {Comptes Rendus. Math\'ematique}, pages = {441--444}, publisher = {Elsevier}, volume = {345}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.09.004}, language = {en}, }
TY - JOUR AU - Alexander A. Kovalevsky AU - Yuliya S. Gorban TI - Degenerate anisotropic variational inequalities with $ {L}^{1}$-data JO - Comptes Rendus. Mathématique PY - 2007 SP - 441 EP - 444 VL - 345 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2007.09.004 LA - en ID - CRMATH_2007__345_8_441_0 ER -
Alexander A. Kovalevsky; Yuliya S. Gorban. Degenerate anisotropic variational inequalities with $ {L}^{1}$-data. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 441-444. doi : 10.1016/j.crma.2007.09.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.004/
[1] Quasilinear degenerate elliptic unilateral problems, Abstr. Appl. Anal., Volume 1 (2005), pp. 11-31
[2] Local T-sets and degenerate variational problems. Part. I, Appl. Math. Lett., Volume 7 (1994), pp. 49-53
[3] An
[4] Existence and uniqueness of solution of unilateral problems with
[5] Problèmes unilatéraux avec donnés dans
[6] Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations, Volume 17 (1992), pp. 641-655
[7] Anisotropic equations in
[8] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 28 (1999), pp. 741-808
[9] Entropy solutions of the Dirichlet problem for a class of non-linear elliptic fourth-order equations with right-hand sides in
[10] Existence and uniqueness of solutions for nonlinear obstacle problems with measure data, Nonlinear Anal., Volume 43 (2001), pp. 199-215
[11] Équations elliptiques non linéaires avec second membre
[12] Existence of solutions for unilateral problems with multivalued operators, J. Convex Anal., Volume 2 (1995), pp. 241-261
[13] Unilateral problems with measure data: links and convergence, Differential Integral Equations, Volume 14 (2001), pp. 1051-1076
[14] Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., Volume 18 (1969), pp. 3-24
- Solvability issue for optimal control problem in coefficients for degenerate parabolic variational inequality, Contemporary approaches and methods in fundamental mathematics and mechanics, Cham: Springer, 2021, pp. 457-473 | DOI:10.1007/978-3-030-50302-4_22 | Zbl:1478.49007
- Attainability issue for the optimal control problem in coefficients for a degenerate parabolic variational inequality, Journal of Mathematical Sciences (New York), Volume 258 (2021) no. 5, pp. 636-654 | DOI:10.1007/s10958-021-05571-4 | Zbl:1477.49016
- Higher integrabilities and boundednesses for minimizers of weighted anisotropic integral functionals, Mathematical Communications, Volume 24 (2019) no. 1, pp. 1-18 | Zbl:1420.49009
- Existence of entropy solutions for nonlinear elliptic degenerate anisotropic equations, Open Mathematics, Volume 15 (2017), pp. 768-786 | DOI:10.1515/math-2017-0064 | Zbl:1370.35118
- Toward the
-theory of degenerate anisotropic elliptic variational inequalities, Proceedings of the Steklov Institute of Mathematics, Volume 292 (2016), p. s156-s172 | DOI:10.1134/s0081543816020139 | Zbl:1343.49015 - Integrability and boundedness of solutions to some anisotropic problems, Journal of Mathematical Analysis and Applications, Volume 432 (2015) no. 2, pp. 820-843 | DOI:10.1016/j.jmaa.2015.07.013 | Zbl:1321.49062
- On the boundedness of solutions of degenerate anisotropic elliptic variational inequalities, Results in Mathematics, Volume 65 (2014) no. 1-2, pp. 121-142 | DOI:10.1007/s00025-013-0334-6 | Zbl:1304.35305
- On
-solutions of degenerate anisotropic elliptic variational inequalities with -data, Izvestiya: Mathematics, Volume 75 (2011) no. 1, p. 101 | DOI:10.1070/im2011v075n01abeh002529 - Optimal L 1-Control in Coefficients for Dirichlet Elliptic Problems: W-Optimal Solutions, Journal of Optimization Theory and Applications, Volume 150 (2011) no. 2, p. 205 | DOI:10.1007/s10957-011-9840-4
- Weak optimal controls in coefficients for linear elliptic problems, Revista Matemática Complutense, Volume 24 (2011) no. 1, pp. 83-94 | DOI:10.1007/s13163-010-0030-y | Zbl:1210.35129
- О
-решениях вырождающихся анизотропных эллиптических вариационных неравенств с -данными, Известия Российской академии наук. Серия математическая, Volume 75 (2011) no. 1, p. 101 | DOI:10.4213/im2774
Cité par 11 documents. Sources : Crossref, zbMATH
Commentaires - Politique