[Inéquations variationnelles dégénérescents anisotropes avec données dans
Dans cette Note nous introduisons les notions de T-solution et T-solution translatante des inéquations variationnelles correspondant à un opérateur non linéair dégénérescent anisotrope elliptique, un ensemble de contraintes d'une classe suffisament large et le second membre dans
In this Note we introduce notions of T-solution and shift T-solution of variational inequalities corresponding to a nonlinear degenerate anisotropic elliptic operator, a set of constraints of a sufficiently large class and an
Accepté le :
Publié le :
Alexander A. Kovalevsky 1 ; Yuliya S. Gorban 2
@article{CRMATH_2007__345_8_441_0, author = {Alexander A. Kovalevsky and Yuliya S. Gorban}, title = {Degenerate anisotropic variational inequalities with $ {L}^{1}$-data}, journal = {Comptes Rendus. Math\'ematique}, pages = {441--444}, publisher = {Elsevier}, volume = {345}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.09.004}, language = {en}, }
TY - JOUR AU - Alexander A. Kovalevsky AU - Yuliya S. Gorban TI - Degenerate anisotropic variational inequalities with $ {L}^{1}$-data JO - Comptes Rendus. Mathématique PY - 2007 SP - 441 EP - 444 VL - 345 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2007.09.004 LA - en ID - CRMATH_2007__345_8_441_0 ER -
Alexander A. Kovalevsky; Yuliya S. Gorban. Degenerate anisotropic variational inequalities with $ {L}^{1}$-data. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 441-444. doi : 10.1016/j.crma.2007.09.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.004/
[1] Quasilinear degenerate elliptic unilateral problems, Abstr. Appl. Anal., Volume 1 (2005), pp. 11-31
[2] Local T-sets and degenerate variational problems. Part. I, Appl. Math. Lett., Volume 7 (1994), pp. 49-53
[3] An
[4] Existence and uniqueness of solution of unilateral problems with
[5] Problèmes unilatéraux avec donnés dans
[6] Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations, Volume 17 (1992), pp. 641-655
[7] Anisotropic equations in
[8] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 28 (1999), pp. 741-808
[9] Entropy solutions of the Dirichlet problem for a class of non-linear elliptic fourth-order equations with right-hand sides in
[10] Existence and uniqueness of solutions for nonlinear obstacle problems with measure data, Nonlinear Anal., Volume 43 (2001), pp. 199-215
[11] Équations elliptiques non linéaires avec second membre
[12] Existence of solutions for unilateral problems with multivalued operators, J. Convex Anal., Volume 2 (1995), pp. 241-261
[13] Unilateral problems with measure data: links and convergence, Differential Integral Equations, Volume 14 (2001), pp. 1051-1076
[14] Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., Volume 18 (1969), pp. 3-24
Cité par Sources :
Commentaires - Politique