[Inéquations variationnelles dégénérescents anisotropes avec données dans ]
Dans cette Note nous introduisons les notions de T-solution et T-solution translatante des inéquations variationnelles correspondant à un opérateur non linéair dégénérescent anisotrope elliptique, un ensemble de contraintes d'une classe suffisament large et le second membre dans . Nous donnons les théorèmes d'existence, d'unicité et de propriétées de ces solutions et décrivons leur relation avec solutions des inéquations variationnelles au sens ordinaire.
In this Note we introduce notions of T-solution and shift T-solution of variational inequalities corresponding to a nonlinear degenerate anisotropic elliptic operator, a set of constraints of a sufficiently large class and an -right-hand side. We give theorems on the existence, uniqueness and properties of these solutions and describe their relation with solutions of variational inequalities in usual sense.
Accepté le :
Publié le :
Alexander A. Kovalevsky 1 ; Yuliya S. Gorban 2
@article{CRMATH_2007__345_8_441_0, author = {Alexander A. Kovalevsky and Yuliya S. Gorban}, title = {Degenerate anisotropic variational inequalities with $ {L}^{1}$-data}, journal = {Comptes Rendus. Math\'ematique}, pages = {441--444}, publisher = {Elsevier}, volume = {345}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.09.004}, language = {en}, }
TY - JOUR AU - Alexander A. Kovalevsky AU - Yuliya S. Gorban TI - Degenerate anisotropic variational inequalities with $ {L}^{1}$-data JO - Comptes Rendus. Mathématique PY - 2007 SP - 441 EP - 444 VL - 345 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2007.09.004 LA - en ID - CRMATH_2007__345_8_441_0 ER -
Alexander A. Kovalevsky; Yuliya S. Gorban. Degenerate anisotropic variational inequalities with $ {L}^{1}$-data. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 441-444. doi : 10.1016/j.crma.2007.09.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.004/
[1] Quasilinear degenerate elliptic unilateral problems, Abstr. Appl. Anal., Volume 1 (2005), pp. 11-31
[2] Local T-sets and degenerate variational problems. Part. I, Appl. Math. Lett., Volume 7 (1994), pp. 49-53
[3] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 22 (1995), pp. 241-273
[4] Existence and uniqueness of solution of unilateral problems with data, J. Convex Anal., Volume 6 (1999), pp. 195-206
[5] Problèmes unilatéraux avec donnés dans , C. R. Acad. Sci. Paris, Ser. I, Volume 311 (1990), pp. 617-619
[6] Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations, Volume 17 (1992), pp. 641-655
[7] Anisotropic equations in , Differential Integral Equations, Volume 9 (1996), pp. 209-212
[8] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 28 (1999), pp. 741-808
[9] Entropy solutions of the Dirichlet problem for a class of non-linear elliptic fourth-order equations with right-hand sides in , Izv. Math., Volume 65 (2001), pp. 231-283
[10] Existence and uniqueness of solutions for nonlinear obstacle problems with measure data, Nonlinear Anal., Volume 43 (2001), pp. 199-215
[11] Équations elliptiques non linéaires avec second membre ou measure, Actes du 26ème Congrès National d'Analyse Numérique, Les Karellis, France, 1994, p. A12-A24
[12] Existence of solutions for unilateral problems with multivalued operators, J. Convex Anal., Volume 2 (1995), pp. 241-261
[13] Unilateral problems with measure data: links and convergence, Differential Integral Equations, Volume 14 (2001), pp. 1051-1076
[14] Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., Volume 18 (1969), pp. 3-24
Cité par Sources :
Commentaires - Politique