[Lois de conservation scalaires avec des conditions non linéaires au bord]
Cette Note est dédiée aux résultats d'unicité des solutions du problème
This Note deals with uniqueness and continuous dependence of solutions to the problem
Accepté le :
Publié le :
Boris Andreianov 1 ; Karima Sbihi 1
@article{CRMATH_2007__345_8_431_0, author = {Boris Andreianov and Karima Sbihi}, title = {Scalar conservation laws with nonlinear boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {431--434}, publisher = {Elsevier}, volume = {345}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.09.008}, language = {en}, }
Boris Andreianov; Karima Sbihi. Scalar conservation laws with nonlinear boundary conditions. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 431-434. doi : 10.1016/j.crma.2007.09.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.008/
[1] B. Andreianov, K. Sbihi, Strong boundary traces and well-posedness for scalar conservation laws with dissipative boundary conditions, in: Proceedings of the XIth International Conference on Hyperbolic Problems, Lyon 2006
[2] First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, Volume 4 (1979), pp. 1017-1034
[3] On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition, J. Math. Anal. Appl., Volume 326 (2007), pp. 108-120
[4] Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., Volume 147 (1999), pp. 269-361
[5] Divergence-Measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., Volume 147 (1999), pp. 89-118
[6] Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chinese Ann. Math. Ser. B, Volume 16 (1995), pp. 1-14
[7] E.Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional scalar conservation laws, J. Hyperbolic Differ. Equ., in press
[8] K. Sbihi, Etude de quelques E.D.P. non linéaires dans
- An Introduction to Boundary Conditions, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Volume 118 (2021), p. 581 | DOI:10.1007/978-1-0716-1344-3_6
- Effective junction conditions for degenerate parabolic equations, Calculus of Variations and Partial Differential Equations, Volume 56 (2017) no. 6 | DOI:10.1007/s00526-017-1239-0
- Effective nonlinear Neumann boundary conditions for 1D nonconvex Hamilton–Jacobi equations, Journal of Differential Equations, Volume 263 (2017) no. 5, p. 2812 | DOI:10.1016/j.jde.2017.04.015
- Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws, Networks and Heterogeneous Media, Volume 11 (2016) no. 2, p. 203 | DOI:10.3934/nhm.2016.11.203
- Well-posedness of general boundary-value problems for scalar conservation laws, Transactions of the American Mathematical Society, Volume 367 (2015) no. 6, p. 3763 | DOI:10.1090/s0002-9947-2015-05988-1
- Isothermal water flows in low porosity porous media in presence of vapor–liquid phase change, Nonlinear Analysis: Real World Applications, Volume 15 (2014), p. 306 | DOI:10.1016/j.nonrwa.2011.11.021
- Entropy formulation of degenerate parabolic equation with zero-flux boundary condition, Zeitschrift für angewandte Mathematik und Physik, Volume 64 (2013) no. 5, p. 1471 | DOI:10.1007/s00033-012-0297-6
- A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux, Archive for Rational Mechanics and Analysis, Volume 201 (2011) no. 1, p. 27 | DOI:10.1007/s00205-010-0389-4
Cité par 8 documents. Sources : Crossref
Commentaires - Politique