This Note deals with uniqueness and continuous dependence of solutions to the problem on with initial condition on Ω and with (formal) nonlinear boundary conditions on , where stands for a maximal monotone graph on . We suggest an interpretation of the formal boundary condition which generalizes the Bardos–LeRoux–Nédélec condition, and introduce the corresponding notions of entropy and entropy process solutions using the strong trace framework of E.Yu. Panov. We prove uniqueness and provide some support for our interpretation of the boundary condition.
Cette Note est dédiée aux résultats d'unicité des solutions du problème div sur avec la condition initiale sur Ω et les conditions non linéaires sur ; ici désigne un graphe maximal monotone sur . Nous proposons une interprétation de la condition formelle « » qui généralise celle de Bardos–LeRoux–Nédélec ; nous introduisons les notions de solutions entropiques et solutions processus entropiques. Nous montrons l'unicité et argumentons en faveur de notre interprétation de la condition au bord.
Accepted:
Published online:
Boris Andreianov 1; Karima Sbihi 1
@article{CRMATH_2007__345_8_431_0, author = {Boris Andreianov and Karima Sbihi}, title = {Scalar conservation laws with nonlinear boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {431--434}, publisher = {Elsevier}, volume = {345}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.09.008}, language = {en}, }
Boris Andreianov; Karima Sbihi. Scalar conservation laws with nonlinear boundary conditions. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 431-434. doi : 10.1016/j.crma.2007.09.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.008/
[1] B. Andreianov, K. Sbihi, Strong boundary traces and well-posedness for scalar conservation laws with dissipative boundary conditions, in: Proceedings of the XIth International Conference on Hyperbolic Problems, Lyon 2006
[2] First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, Volume 4 (1979), pp. 1017-1034
[3] On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition, J. Math. Anal. Appl., Volume 326 (2007), pp. 108-120
[4] Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., Volume 147 (1999), pp. 269-361
[5] Divergence-Measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., Volume 147 (1999), pp. 89-118
[6] Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chinese Ann. Math. Ser. B, Volume 16 (1995), pp. 1-14
[7] E.Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional scalar conservation laws, J. Hyperbolic Differ. Equ., in press
[8] K. Sbihi, Etude de quelques E.D.P. non linéaires dans avec des conditions générales sur le bord, Thesis, University of Strasbourg, France, 2006
Cited by Sources:
Comments - Policy