In this Note, we consider a stochastic network of interacting points to which we associate an energy. We study the variational convergence of such an energy when the typical distance of the network goes to zero. We prove that the limit energy can be written as an integral functional, whose energy density is deterministic, hyperelastic and frame-invariant. This derivation allows us in particular to obtain a continuous energy density associated to cross-linked polymer networks.
Dans cette Note, nous considérons un réseau stochastique de points en interaction auquel nous associons une énergie. Nous étudions alors la convergence variationnelle de cette énergie lorsque la distance caractéristique du réseau tend vers zéro. Nous démontrons que l'énergie limite s'écrit comme l'intégrale d'une densité d'énergie déterministe, hyperélastique et objective. Cette dérivation couvre en particulier des modèles de réseau de polymères réticulés.
Accepted:
Published online:
Roberto Alicandro 1; Marco Cicalese 2; Antoine Gloria 3
@article{CRMATH_2007__345_8_479_0, author = {Roberto Alicandro and Marco Cicalese and Antoine Gloria}, title = {Mathematical derivation of a rubber-like stored energy functional}, journal = {Comptes Rendus. Math\'ematique}, pages = {479--482}, publisher = {Elsevier}, volume = {345}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.10.005}, language = {en}, }
TY - JOUR AU - Roberto Alicandro AU - Marco Cicalese AU - Antoine Gloria TI - Mathematical derivation of a rubber-like stored energy functional JO - Comptes Rendus. Mathématique PY - 2007 SP - 479 EP - 482 VL - 345 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2007.10.005 LA - en ID - CRMATH_2007__345_8_479_0 ER -
Roberto Alicandro; Marco Cicalese; Antoine Gloria. Mathematical derivation of a rubber-like stored energy functional. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 479-482. doi : 10.1016/j.crma.2007.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.005/
[1] A general integral representation result for the continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., Volume 36 (2004) no. 1, pp. 1-37
[2] R. Alicandro, M. Cicalese, A. Gloria, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, in preparation
[3] Du discret au continu pour des réseaux aléatoires d'atomes, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 627-633
[4] The energy of some microscopic stochastic lattices, Arch. Rational Mech. Anal., Volume 184 (2007) no. 2, pp. 303-339
[5] Stochastic homogenization and random lattices, J. Math. Pures Appl., Volume 88 (2007) no. 1, pp. 34-63
[6] Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications, vol. 20, Oxford University Press, 2002
[7] Integral representation and relaxation of local functionals, Nonlinear Anal., Volume 9 (1985) no. 6, pp. 515-532
[8] Mathematical Elasticity, Vol. I, Studies in Mathematics and its Applications, vol. 20, North-Holland Publishing Co., Amsterdam, 1988
[9] Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math., Volume 368 (1986), pp. 28-42
[10] Variational limit of a one-dimensional discrete and statistically homogeneous system of material points, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 32 (2001), pp. 575-580
[11] Variational limit of a one-dimensional discrete and statistically homogeneous system of material points, Asymptotic Anal., Volume 28 (2001), pp. 309-329
[12] The Physics of Rubber Elasticity, Oxford at Clarendon Press, Oxford, 1949
Cited by Sources:
Comments - Policy