Comptes Rendus
Mathematical Problems in Mechanics
Mathematical derivation of a rubber-like stored energy functional
Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 479-482.

In this Note, we consider a stochastic network of interacting points to which we associate an energy. We study the variational convergence of such an energy when the typical distance of the network goes to zero. We prove that the limit energy can be written as an integral functional, whose energy density is deterministic, hyperelastic and frame-invariant. This derivation allows us in particular to obtain a continuous energy density associated to cross-linked polymer networks.

Dans cette Note, nous considérons un réseau stochastique de points en interaction auquel nous associons une énergie. Nous étudions alors la convergence variationnelle de cette énergie lorsque la distance caractéristique du réseau tend vers zéro. Nous démontrons que l'énergie limite s'écrit comme l'intégrale d'une densité d'énergie déterministe, hyperélastique et objective. Cette dérivation couvre en particulier des modèles de réseau de polymères réticulés.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.005

Roberto Alicandro 1; Marco Cicalese 2; Antoine Gloria 3

1 DAEIMI, Università di Cassino, via Di Biasio 43, 03043 Cassino, Italy
2 Dipartimento di Matematica e Applicazioni ‘R. Caccioppoli’, Università di Napoli, via Cintia, 80126 Napoli, Italy
3 CERMICS – ENPC, 6 et 8, avenue Blaise-Pascal, Champs sur Marne, 77455 Marne la Vallée cedex 2, France
@article{CRMATH_2007__345_8_479_0,
     author = {Roberto Alicandro and Marco Cicalese and Antoine Gloria},
     title = {Mathematical derivation of a rubber-like stored energy functional},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {479--482},
     publisher = {Elsevier},
     volume = {345},
     number = {8},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.005},
     language = {en},
}
TY  - JOUR
AU  - Roberto Alicandro
AU  - Marco Cicalese
AU  - Antoine Gloria
TI  - Mathematical derivation of a rubber-like stored energy functional
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 479
EP  - 482
VL  - 345
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.005
LA  - en
ID  - CRMATH_2007__345_8_479_0
ER  - 
%0 Journal Article
%A Roberto Alicandro
%A Marco Cicalese
%A Antoine Gloria
%T Mathematical derivation of a rubber-like stored energy functional
%J Comptes Rendus. Mathématique
%D 2007
%P 479-482
%V 345
%N 8
%I Elsevier
%R 10.1016/j.crma.2007.10.005
%G en
%F CRMATH_2007__345_8_479_0
Roberto Alicandro; Marco Cicalese; Antoine Gloria. Mathematical derivation of a rubber-like stored energy functional. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 479-482. doi : 10.1016/j.crma.2007.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.005/

[1] R. Alicandro; M. Cicalese A general integral representation result for the continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., Volume 36 (2004) no. 1, pp. 1-37

[2] R. Alicandro, M. Cicalese, A. Gloria, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, in preparation

[3] X. Blanc; C. Le Bris; P.L. Lions Du discret au continu pour des réseaux aléatoires d'atomes, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 627-633

[4] X. Blanc; C. Le Bris; P.L. Lions The energy of some microscopic stochastic lattices, Arch. Rational Mech. Anal., Volume 184 (2007) no. 2, pp. 303-339

[5] X. Blanc; C. Le Bris; P.L. Lions Stochastic homogenization and random lattices, J. Math. Pures Appl., Volume 88 (2007) no. 1, pp. 34-63

[6] A. Braides Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications, vol. 20, Oxford University Press, 2002

[7] G. Buttazzo; G. Dal Maso Integral representation and relaxation of local functionals, Nonlinear Anal., Volume 9 (1985) no. 6, pp. 515-532

[8] P.G. Ciarlet Mathematical Elasticity, Vol. I, Studies in Mathematics and its Applications, vol. 20, North-Holland Publishing Co., Amsterdam, 1988

[9] G. Dal Maso; L. Modica Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math., Volume 368 (1986), pp. 28-42

[10] O. Iosifescu; C. Licht; G. Michaille Variational limit of a one-dimensional discrete and statistically homogeneous system of material points, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 32 (2001), pp. 575-580

[11] O. Iosifescu; C. Licht; G. Michaille Variational limit of a one-dimensional discrete and statistically homogeneous system of material points, Asymptotic Anal., Volume 28 (2001), pp. 309-329

[12] L.R.G. Treolar The Physics of Rubber Elasticity, Oxford at Clarendon Press, Oxford, 1949

Cited by Sources:

Comments - Policy