Comptes Rendus
Mathematical Problems in Mechanics/Partial Differential Equations
3D–2D analysis for the optimal elastic compliance problem
[Analyse limite 3D–2D du problème de compliance optimale]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 713-718.

On considère le problème de minimisation de la compliance d'un matériau élastique soumis à un chargement donné que l'on doit placer dans un domaine dont l'épaisseur tend vers zéro. Nous déterminons le problème limite ainsi que les conditions nécessaires et suffisantes d'optimalité associées.

We consider the variational problems which consist in minimizing the compliance of a prescribed amount of elastic material which is subject to a given load and is placed in a design region of infinitesimal height. We determine the limit problem, and we provide necessary and sufficient optimality conditions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.10.039

Guy Bouchitté 1 ; Ilaria Fragalà 2 ; Pierre Seppecher 1

1 Laboratoire ANAM, Université de Toulon et du Var, 83957 La Garde cedex, France
2 Dipartimento di Matematica, Politecnico, Piazza L. da Vinci, 32, 20133 Milano, Italy
@article{CRMATH_2007__345_12_713_0,
     author = {Guy Bouchitt\'e and Ilaria Fragal\`a and Pierre Seppecher},
     title = {3D{\textendash}2D analysis for the optimal elastic compliance problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {713--718},
     publisher = {Elsevier},
     volume = {345},
     number = {12},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.039},
     language = {en},
}
TY  - JOUR
AU  - Guy Bouchitté
AU  - Ilaria Fragalà
AU  - Pierre Seppecher
TI  - 3D–2D analysis for the optimal elastic compliance problem
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 713
EP  - 718
VL  - 345
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.039
LA  - en
ID  - CRMATH_2007__345_12_713_0
ER  - 
%0 Journal Article
%A Guy Bouchitté
%A Ilaria Fragalà
%A Pierre Seppecher
%T 3D–2D analysis for the optimal elastic compliance problem
%J Comptes Rendus. Mathématique
%D 2007
%P 713-718
%V 345
%N 12
%I Elsevier
%R 10.1016/j.crma.2007.10.039
%G en
%F CRMATH_2007__345_12_713_0
Guy Bouchitté; Ilaria Fragalà; Pierre Seppecher. 3D–2D analysis for the optimal elastic compliance problem. Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 713-718. doi : 10.1016/j.crma.2007.10.039. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.039/

[1] G. Allaire Shape Optimization by the Homogenization Method, Springer, Berlin, 2002

[2] E. Bonnetier; C. Conca Approximation of Young measures by functions and application to a problem of optimal design for plates with variable thickness, Proc. Roy. Soc. Edinburgh Sect. A, Volume 124 (1994) no. 3, pp. 399-422

[3] G. Bouchitté; I. Fragalà Optimality conditions for mass design problems and applications to thin plates, Arch. Ration. Mech. Anal., Volume 184 (2007) no. 2, pp. 257-284 (74)

[4] G. Bouchitté; I. Fragalà Optimal design of thin plates by a dimension reduction for linear constrained problems, SIAM J. Control Optim., Volume 46 (2007) no. 5, pp. 1664-1682

[5] D. Caillerie Models of thin or thick plates and membranes derived from linear elasticity, Applications of Multiple Scaling in Mechanics, Masson, Paris, 1987, pp. 54-68

[6] P. Ciarlet Mathematical Elasticity, Vol. 2, Theory of Plates, Studies in Mathematics and Applications, vol. 27, North-Holland, Amsterdam, 1997

[7] T. Lewinski; J.J. Telega Michell-like grillages and structures with locking, Arch. Mech., Volume 53 (2001), pp. 457-485

Cité par Sources :

Commentaires - Politique