Comptes Rendus
Mathematical Analysis/Calculus of Variations
3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
[Réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec pénalisation sur le périmètre]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1011-1016.

On effectue dans ce travail une réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec une pénalisation du périmètre. Une représentation intégrale de la fonctionnelle limite est obtenue.

A 3D–2D dimension reduction for a nonlinear optimal design problem with a perimeter penalization is performed in the realm of Γ-convergence, providing an integral representation for the limit functional.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.11.005

Graça Carita 1 ; Elvira Zappale 2

1 CIMA-UE, Departamento de Matemática, Universidade de Évora, Rua Romão Ramalho, 59 7000-671 Évora, Portugal
2 D.I.IN., Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
@article{CRMATH_2012__350_23-24_1011_0,
     author = {Gra\c{c}a Carita and Elvira Zappale},
     title = {3D{\textendash}2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1011--1016},
     publisher = {Elsevier},
     volume = {350},
     number = {23-24},
     year = {2012},
     doi = {10.1016/j.crma.2012.11.005},
     language = {en},
}
TY  - JOUR
AU  - Graça Carita
AU  - Elvira Zappale
TI  - 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 1011
EP  - 1016
VL  - 350
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2012.11.005
LA  - en
ID  - CRMATH_2012__350_23-24_1011_0
ER  - 
%0 Journal Article
%A Graça Carita
%A Elvira Zappale
%T 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
%J Comptes Rendus. Mathématique
%D 2012
%P 1011-1016
%V 350
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2012.11.005
%G en
%F CRMATH_2012__350_23-24_1011_0
Graça Carita; Elvira Zappale. 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1011-1016. doi : 10.1016/j.crma.2012.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.005/

[1] G. Allaire Shape Optimization by the Homogenization Method, Springer, Berlin, 2002

[2] L. Ambrosio; G. Buttazzo An optimal design problem with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 1 (1993) no. 1, pp. 55-69

[3] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Clarendon Press, Oxford, 2000 (xviii)

[4] J.F. Babadjian; G. Francfort Spatial heterogeneity in 3D–2D dimensional reduction, ESAIM Control Optim. Calc. Var., Volume 11 (2005), pp. 139-160

[5] M. Bocea; I. Fonseca Equi-integrability results for 3D–2D dimension reduction problems, ESAIM Control Optim. Calc. Var., Volume 7 (2002), pp. 443-470

[6] G. Bouchitté; I. Fragalá; P. Seppecher 3D–2D analysis for the optimal elastic compliance problem, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 713-718

[7] G. Bouchitté; I. Fragalá; P. Seppecher The optimal compliance problem for thin torsion rods: A 3D–1D analysis leading to Cheeger-type solutions, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 467-471

[8] G. Bouchitté, I. Fragalá, P. Seppecher, Structural optimization of thin plates: the three dimensional approach, preprint.

[9] A. Braides; I. Fonseca; G. Francfort 3D–2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404

[10] M. Carozza, I. Fonseca, A. Passarelli di Napoli, in preparation.

[11] P. Ciarlet Mathematical Elasticity, vol. 2, Theory of Plates, Stud. Math. Appl., vol. 27, North-Holland, Amsterdam, 1997

[12] G. Dal Maso An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Inc., Boston, MA, 1983

[13] I. Fonseca; G. Francfort 3D–2D asymptotic analysis of an optimal design problem for thin films, J. Reine Angew. Math., Volume 505 (1998), pp. 173-202

[14] C.J. Larsen Regularity in two-dimensional variational problems with perimeter penalties, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 261-266

[15] C.J. Larsen Regularity of components in optimal design problems with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 16 (2003) no. 1, pp. 17-29

[16] H. Le Dret; A. Raoult The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995), pp. 549-578

[17] F.H. Lin; R.V. Kohn Partial regularity for optimal design problems involving both bulk and surface energies, Chin. Ann. Math. Ser. B, Volume 20 (1999) no. 2, pp. 137-158

Cité par Sources :

Commentaires - Politique