Comptes Rendus
Mathematical Analysis/Calculus of Variations
3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
[Réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec pénalisation sur le périmètre]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1011-1016.

A 3D–2D dimension reduction for a nonlinear optimal design problem with a perimeter penalization is performed in the realm of Γ-convergence, providing an integral representation for the limit functional.

On effectue dans ce travail une réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec une pénalisation du périmètre. Une représentation intégrale de la fonctionnelle limite est obtenue.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.11.005

Graça Carita 1 ; Elvira Zappale 2

1 CIMA-UE, Departamento de Matemática, Universidade de Évora, Rua Romão Ramalho, 59 7000-671 Évora, Portugal
2 D.I.IN., Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
@article{CRMATH_2012__350_23-24_1011_0,
     author = {Gra\c{c}a Carita and Elvira Zappale},
     title = {3D{\textendash}2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1011--1016},
     publisher = {Elsevier},
     volume = {350},
     number = {23-24},
     year = {2012},
     doi = {10.1016/j.crma.2012.11.005},
     language = {en},
}
TY  - JOUR
AU  - Graça Carita
AU  - Elvira Zappale
TI  - 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 1011
EP  - 1016
VL  - 350
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2012.11.005
LA  - en
ID  - CRMATH_2012__350_23-24_1011_0
ER  - 
%0 Journal Article
%A Graça Carita
%A Elvira Zappale
%T 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
%J Comptes Rendus. Mathématique
%D 2012
%P 1011-1016
%V 350
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2012.11.005
%G en
%F CRMATH_2012__350_23-24_1011_0
Graça Carita; Elvira Zappale. 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1011-1016. doi : 10.1016/j.crma.2012.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.005/

[1] G. Allaire Shape Optimization by the Homogenization Method, Springer, Berlin, 2002

[2] L. Ambrosio; G. Buttazzo An optimal design problem with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 1 (1993) no. 1, pp. 55-69

[3] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Clarendon Press, Oxford, 2000 (xviii)

[4] J.F. Babadjian; G. Francfort Spatial heterogeneity in 3D–2D dimensional reduction, ESAIM Control Optim. Calc. Var., Volume 11 (2005), pp. 139-160

[5] M. Bocea; I. Fonseca Equi-integrability results for 3D–2D dimension reduction problems, ESAIM Control Optim. Calc. Var., Volume 7 (2002), pp. 443-470

[6] G. Bouchitté; I. Fragalá; P. Seppecher 3D–2D analysis for the optimal elastic compliance problem, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 713-718

[7] G. Bouchitté; I. Fragalá; P. Seppecher The optimal compliance problem for thin torsion rods: A 3D–1D analysis leading to Cheeger-type solutions, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 467-471

[8] G. Bouchitté, I. Fragalá, P. Seppecher, Structural optimization of thin plates: the three dimensional approach, preprint.

[9] A. Braides; I. Fonseca; G. Francfort 3D–2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404

[10] M. Carozza, I. Fonseca, A. Passarelli di Napoli, in preparation.

[11] P. Ciarlet Mathematical Elasticity, vol. 2, Theory of Plates, Stud. Math. Appl., vol. 27, North-Holland, Amsterdam, 1997

[12] G. Dal Maso An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Inc., Boston, MA, 1983

[13] I. Fonseca; G. Francfort 3D–2D asymptotic analysis of an optimal design problem for thin films, J. Reine Angew. Math., Volume 505 (1998), pp. 173-202

[14] C.J. Larsen Regularity in two-dimensional variational problems with perimeter penalties, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 261-266

[15] C.J. Larsen Regularity of components in optimal design problems with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 16 (2003) no. 1, pp. 17-29

[16] H. Le Dret; A. Raoult The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995), pp. 549-578

[17] F.H. Lin; R.V. Kohn Partial regularity for optimal design problems involving both bulk and surface energies, Chin. Ann. Math. Ser. B, Volume 20 (1999) no. 2, pp. 137-158

  • Michela Eleuteri; Francesca Prinari; Elvira Zappale Asymptotic analysis of thin structures with point-dependent energy growth, M3AS. Mathematical Models Methods in Applied Sciences, Volume 34 (2024) no. 8, pp. 1401-1443 | DOI:10.1142/s0218202524500258 | Zbl:7880948
  • Giuliano Gargiulo; Valerii Samoilenko; Elvira Zappale Power law approximation results for optimal design problems, Nonlinear differential equations and applications. Portugal-Italy conference on NDEA, Évora, Portugal, July 4–6, 2022, Cham: Springer, 2024, pp. 91-106 | DOI:10.1007/978-3-031-53740-0_6 | Zbl:1557.49019
  • Ana Cristina Barroso; José Matias; Elvira Zappale Relaxation for an optimal design problem in BD(Ω), Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, Volume 153 (2023) no. 3, pp. 721-763 | DOI:10.1017/prm.2022.11 | Zbl:1518.49017
  • Ana Cristina Barroso; Elvira Zappale An optimal design problem with non-standard growth and no concentration effects, Asymptotic Analysis, Volume 128 (2022) no. 3, pp. 385-412 | DOI:10.3233/asy-211711 | Zbl:1489.35272
  • Hamdi Zorgati A Γ-convergence result for optimal design problems, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 360 (2022), pp. 1145-1151 | DOI:10.5802/crmath.375 | Zbl:1501.74062
  • Ana Cristina Barroso; Elvira Zappale Relaxation for optimal design problems with non-standard growth, Applied Mathematics and Optimization, Volume 80 (2019) no. 2, pp. 515-546 | DOI:10.1007/s00245-017-9473-6 | Zbl:1429.49014
  • P. A. Kozarzewski; E. Zappale A note on optimal design for thin structures in the Orlicz-Sobolev setting, Integral methods in science and engineering. Volume 1. Theoretical techniques. Based on talks given at the 14th international conference, Padova, Italy, July 25–29, 2016, Basel: Birkhäuser/Springer, 2017, pp. 161-171 | DOI:10.1007/978-3-319-59384-5_14 | Zbl:1441.35228
  • Piotr Antoni Kozarzewski; Elvira Zappale Orlicz equi-integrability for scaled gradients, Journal of Elliptic and Parabolic Equations, Volume 3 (2017) no. 1-2, pp. 1-13 | DOI:10.1007/s41808-017-0001-2 | Zbl:1387.74016

Cité par 8 documents. Sources : zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: