[Réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec pénalisation sur le périmètre]
A 3D–2D dimension reduction for a nonlinear optimal design problem with a perimeter penalization is performed in the realm of Γ-convergence, providing an integral representation for the limit functional.
On effectue dans ce travail une réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec une pénalisation du périmètre. Une représentation intégrale de la fonctionnelle limite est obtenue.
Accepté le :
Publié le :
Graça Carita 1 ; Elvira Zappale 2
@article{CRMATH_2012__350_23-24_1011_0, author = {Gra\c{c}a Carita and Elvira Zappale}, title = {3D{\textendash}2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization}, journal = {Comptes Rendus. Math\'ematique}, pages = {1011--1016}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.11.005}, language = {en}, }
TY - JOUR AU - Graça Carita AU - Elvira Zappale TI - 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization JO - Comptes Rendus. Mathématique PY - 2012 SP - 1011 EP - 1016 VL - 350 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2012.11.005 LA - en ID - CRMATH_2012__350_23-24_1011_0 ER -
%0 Journal Article %A Graça Carita %A Elvira Zappale %T 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization %J Comptes Rendus. Mathématique %D 2012 %P 1011-1016 %V 350 %N 23-24 %I Elsevier %R 10.1016/j.crma.2012.11.005 %G en %F CRMATH_2012__350_23-24_1011_0
Graça Carita; Elvira Zappale. 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1011-1016. doi : 10.1016/j.crma.2012.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.005/
[1] Shape Optimization by the Homogenization Method, Springer, Berlin, 2002
[2] An optimal design problem with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 1 (1993) no. 1, pp. 55-69
[3] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Clarendon Press, Oxford, 2000 (xviii)
[4] Spatial heterogeneity in 3D–2D dimensional reduction, ESAIM Control Optim. Calc. Var., Volume 11 (2005), pp. 139-160
[5] Equi-integrability results for 3D–2D dimension reduction problems, ESAIM Control Optim. Calc. Var., Volume 7 (2002), pp. 443-470
[6] 3D–2D analysis for the optimal elastic compliance problem, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 713-718
[7] The optimal compliance problem for thin torsion rods: A 3D–1D analysis leading to Cheeger-type solutions, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 467-471
[8] G. Bouchitté, I. Fragalá, P. Seppecher, Structural optimization of thin plates: the three dimensional approach, preprint.
[9] 3D–2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404
[10] M. Carozza, I. Fonseca, A. Passarelli di Napoli, in preparation.
[11] Mathematical Elasticity, vol. 2, Theory of Plates, Stud. Math. Appl., vol. 27, North-Holland, Amsterdam, 1997
[12] An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Inc., Boston, MA, 1983
[13] 3D–2D asymptotic analysis of an optimal design problem for thin films, J. Reine Angew. Math., Volume 505 (1998), pp. 173-202
[14] Regularity in two-dimensional variational problems with perimeter penalties, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 261-266
[15] Regularity of components in optimal design problems with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 16 (2003) no. 1, pp. 17-29
[16] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995), pp. 549-578
[17] Partial regularity for optimal design problems involving both bulk and surface energies, Chin. Ann. Math. Ser. B, Volume 20 (1999) no. 2, pp. 137-158
- Asymptotic analysis of thin structures with point-dependent energy growth, M
AS. Mathematical Models Methods in Applied Sciences, Volume 34 (2024) no. 8, pp. 1401-1443 | DOI:10.1142/s0218202524500258 | Zbl:7880948 - Power law approximation results for optimal design problems, Nonlinear differential equations and applications. Portugal-Italy conference on NDEA, Évora, Portugal, July 4–6, 2022, Cham: Springer, 2024, pp. 91-106 | DOI:10.1007/978-3-031-53740-0_6 | Zbl:1557.49019
- Relaxation for an optimal design problem in
, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, Volume 153 (2023) no. 3, pp. 721-763 | DOI:10.1017/prm.2022.11 | Zbl:1518.49017 - An optimal design problem with non-standard growth and no concentration effects, Asymptotic Analysis, Volume 128 (2022) no. 3, pp. 385-412 | DOI:10.3233/asy-211711 | Zbl:1489.35272
- A
-convergence result for optimal design problems, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 360 (2022), pp. 1145-1151 | DOI:10.5802/crmath.375 | Zbl:1501.74062 - Relaxation for optimal design problems with non-standard growth, Applied Mathematics and Optimization, Volume 80 (2019) no. 2, pp. 515-546 | DOI:10.1007/s00245-017-9473-6 | Zbl:1429.49014
- A note on optimal design for thin structures in the Orlicz-Sobolev setting, Integral methods in science and engineering. Volume 1. Theoretical techniques. Based on talks given at the 14th international conference, Padova, Italy, July 25–29, 2016, Basel: Birkhäuser/Springer, 2017, pp. 161-171 | DOI:10.1007/978-3-319-59384-5_14 | Zbl:1441.35228
- Orlicz equi-integrability for scaled gradients, Journal of Elliptic and Parabolic Equations, Volume 3 (2017) no. 1-2, pp. 1-13 | DOI:10.1007/s41808-017-0001-2 | Zbl:1387.74016
Cité par 8 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier