[Réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec pénalisation sur le périmètre]
On effectue dans ce travail une réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec une pénalisation du périmètre. Une représentation intégrale de la fonctionnelle limite est obtenue.
A 3D–2D dimension reduction for a nonlinear optimal design problem with a perimeter penalization is performed in the realm of Γ-convergence, providing an integral representation for the limit functional.
Accepté le :
Publié le :
Graça Carita 1 ; Elvira Zappale 2
@article{CRMATH_2012__350_23-24_1011_0, author = {Gra\c{c}a Carita and Elvira Zappale}, title = {3D{\textendash}2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization}, journal = {Comptes Rendus. Math\'ematique}, pages = {1011--1016}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.11.005}, language = {en}, }
TY - JOUR AU - Graça Carita AU - Elvira Zappale TI - 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization JO - Comptes Rendus. Mathématique PY - 2012 SP - 1011 EP - 1016 VL - 350 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2012.11.005 LA - en ID - CRMATH_2012__350_23-24_1011_0 ER -
%0 Journal Article %A Graça Carita %A Elvira Zappale %T 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization %J Comptes Rendus. Mathématique %D 2012 %P 1011-1016 %V 350 %N 23-24 %I Elsevier %R 10.1016/j.crma.2012.11.005 %G en %F CRMATH_2012__350_23-24_1011_0
Graça Carita; Elvira Zappale. 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1011-1016. doi : 10.1016/j.crma.2012.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.005/
[1] Shape Optimization by the Homogenization Method, Springer, Berlin, 2002
[2] An optimal design problem with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 1 (1993) no. 1, pp. 55-69
[3] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Clarendon Press, Oxford, 2000 (xviii)
[4] Spatial heterogeneity in 3D–2D dimensional reduction, ESAIM Control Optim. Calc. Var., Volume 11 (2005), pp. 139-160
[5] Equi-integrability results for 3D–2D dimension reduction problems, ESAIM Control Optim. Calc. Var., Volume 7 (2002), pp. 443-470
[6] 3D–2D analysis for the optimal elastic compliance problem, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 713-718
[7] The optimal compliance problem for thin torsion rods: A 3D–1D analysis leading to Cheeger-type solutions, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 467-471
[8] G. Bouchitté, I. Fragalá, P. Seppecher, Structural optimization of thin plates: the three dimensional approach, preprint.
[9] 3D–2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404
[10] M. Carozza, I. Fonseca, A. Passarelli di Napoli, in preparation.
[11] Mathematical Elasticity, vol. 2, Theory of Plates, Stud. Math. Appl., vol. 27, North-Holland, Amsterdam, 1997
[12] An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Inc., Boston, MA, 1983
[13] 3D–2D asymptotic analysis of an optimal design problem for thin films, J. Reine Angew. Math., Volume 505 (1998), pp. 173-202
[14] Regularity in two-dimensional variational problems with perimeter penalties, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 261-266
[15] Regularity of components in optimal design problems with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 16 (2003) no. 1, pp. 17-29
[16] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995), pp. 549-578
[17] Partial regularity for optimal design problems involving both bulk and surface energies, Chin. Ann. Math. Ser. B, Volume 20 (1999) no. 2, pp. 137-158
- Asymptotic analysis of thin structures with point-dependent energy growth, Mathematical Models and Methods in Applied Sciences, Volume 34 (2024) no. 08, p. 1401 | DOI:10.1142/s0218202524500258
- Power Law Approximation Results for Optimal Design Problems, Nonlinear Differential Equations and Applications, Volume 7 (2024), p. 91 | DOI:10.1007/978-3-031-53740-0_6
- Relaxation for an optimal design problem inBD(Ω), Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 153 (2023) no. 3, p. 721 | DOI:10.1017/prm.2022.11
- An optimal design problem with non-standard growth and no concentration effects, Asymptotic Analysis, Volume 128 (2022) no. 3, p. 385 | DOI:10.3233/asy-211711
- A Γ-convergence result for optimal design problems, Comptes Rendus. Mathématique, Volume 360 (2022) no. G10, p. 1145 | DOI:10.5802/crmath.375
- Relaxation for Optimal Design Problems with Non-standard Growth, Applied Mathematics Optimization, Volume 80 (2019) no. 2, p. 515 | DOI:10.1007/s00245-017-9473-6
Cité par 6 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier