[Convergence du maximum renormalisé de fonctions aléatoires dans l'espace
Soit
Let
Accepté le :
Publié le :
Yoann Gentric 1
@article{CRMATH_2008__346_5-6_329_0, author = {Yoann Gentric}, title = {Convergence of the normalized maximum of regularly varying random functions in the space $ \mathbb{D}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {329--334}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2008.01.007}, language = {en}, }
TY - JOUR AU - Yoann Gentric TI - Convergence of the normalized maximum of regularly varying random functions in the space $ \mathbb{D}$ JO - Comptes Rendus. Mathématique PY - 2008 SP - 329 EP - 334 VL - 346 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2008.01.007 LA - en ID - CRMATH_2008__346_5-6_329_0 ER -
Yoann Gentric. Convergence of the normalized maximum of regularly varying random functions in the space $ \mathbb{D}$. Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 329-334. doi : 10.1016/j.crma.2008.01.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.01.007/
[1] Convergence of Probability Measures, John Wiley & Sons Inc., New York, 1968
[2] R.A. Davis, T. Mikosch, Extreme value theory for space–time processes with heavy tailed distributions, Stochastic Process. Appl. 2006, | DOI
[3] On convergence toward an extreme value distribution in
[4] On regular variation for infinitely divisible random vectors and additive processes, Adv. Appl. Probab., Volume 38 (2006) no. 1, pp. 134-148
[5] Extreme Values, Regular Variation, and Point Processes, Applied Probability, A series of the Applied Probability Trust, vol. 4, Springer-Verlag, New York, 1987
- Extremes of independent stochastic processes: a point process approach, Extremes, Volume 19 (2016) no. 2, pp. 197-218 | DOI:10.1007/s10687-016-0243-7 | Zbl:1339.60061
Cité par 1 document. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier