Let be i.i.d. random functions in the space of cadlag functions. The purpose of this note is to complement the result of de Haan and Lin (2001) on the link between regular variation of ξ and convergence of the normalized maximum in the space of continuous functions. We study when regular variation implies convergence of the normalized maximum in . After exhibiting an example, which shows that this is not true in the general case, we give a sufficient condition under which this implication takes place.
Soit des fonctions aléatoires i.i.d. dans l'espace des fonctions cadlag. De Hann et Lin (2001) ont étudié le lien entre la variation régulière de ξ et la convergence en loi dans du maximum renormalisé . Après avoir exhibé un contre-exemple qui montre que le résultat est faux en toute généralité dans , nous donnons une condition suffisante qui assure la convergence du maximum renormalisé dans . A titre d'exemple, le cas d'un processus de Lévy est traité.
Accepted:
Published online:
Yoann Gentric 1
@article{CRMATH_2008__346_5-6_329_0, author = {Yoann Gentric}, title = {Convergence of the normalized maximum of regularly varying random functions in the space $ \mathbb{D}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {329--334}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2008.01.007}, language = {en}, }
TY - JOUR AU - Yoann Gentric TI - Convergence of the normalized maximum of regularly varying random functions in the space $ \mathbb{D}$ JO - Comptes Rendus. Mathématique PY - 2008 SP - 329 EP - 334 VL - 346 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2008.01.007 LA - en ID - CRMATH_2008__346_5-6_329_0 ER -
Yoann Gentric. Convergence of the normalized maximum of regularly varying random functions in the space $ \mathbb{D}$. Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 329-334. doi : 10.1016/j.crma.2008.01.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.01.007/
[1] Convergence of Probability Measures, John Wiley & Sons Inc., New York, 1968
[2] R.A. Davis, T. Mikosch, Extreme value theory for space–time processes with heavy tailed distributions, Stochastic Process. Appl. 2006, | DOI
[3] On convergence toward an extreme value distribution in , Ann. Probab., Volume 29 (2001) no. 1, pp. 467-483
[4] On regular variation for infinitely divisible random vectors and additive processes, Adv. Appl. Probab., Volume 38 (2006) no. 1, pp. 134-148
[5] Extreme Values, Regular Variation, and Point Processes, Applied Probability, A series of the Applied Probability Trust, vol. 4, Springer-Verlag, New York, 1987
Cited by Sources:
Comments - Policy