Comptes Rendus
Statistique
Sur la convergence de l'estimation conditionnelle itérative
[On convergence of the iterative conditional estimation]
Comptes Rendus. Mathématique, Volume 346 (2008) no. 7-8, pp. 457-460.

The iterative conditional estimation (ICE) is an iterative estimation method of the parameters in the case of incomplete data. Its use asks for relatively weak hypotheses and it can be performed in relatively complex situations, as in triplet Markov models. The aim of this Note is to express a general theorem of convergence of ICE, and to show its applicability in the problem of the estimation of the proportions in a mixture of multivariate distributions.

L'estimation conditionnelle itérative (ECI) est une méthode d'estimation itérative des paramètres dans le cas des données incomplètes. Sa mise en œuvre demande des hypothèses relativement faibles et peut être effectuée dans des situations relativement complexes, comme les modèles de Markov triplets. L'objet de cette Note est d'énoncer un théorème général de convergence de l'ECI, et de montrer son applicabilité dans le problème de l'estimation des proportions dans un mélange de lois multi-variées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.02.023

Wojciech Pieczynski 1

1 Institut TELECOM ; TELECOM et Management SudParis ; Dépt. CITI ; CNRS UMR 5157, 9, rue Charles-Fourier, 91000 Evry, France
@article{CRMATH_2008__346_7-8_457_0,
     author = {Wojciech Pieczynski},
     title = {Sur la convergence de l'estimation conditionnelle it\'erative},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {457--460},
     publisher = {Elsevier},
     volume = {346},
     number = {7-8},
     year = {2008},
     doi = {10.1016/j.crma.2008.02.023},
     language = {fr},
}
TY  - JOUR
AU  - Wojciech Pieczynski
TI  - Sur la convergence de l'estimation conditionnelle itérative
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 457
EP  - 460
VL  - 346
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2008.02.023
LA  - fr
ID  - CRMATH_2008__346_7-8_457_0
ER  - 
%0 Journal Article
%A Wojciech Pieczynski
%T Sur la convergence de l'estimation conditionnelle itérative
%J Comptes Rendus. Mathématique
%D 2008
%P 457-460
%V 346
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2008.02.023
%G fr
%F CRMATH_2008__346_7-8_457_0
Wojciech Pieczynski. Sur la convergence de l'estimation conditionnelle itérative. Comptes Rendus. Mathématique, Volume 346 (2008) no. 7-8, pp. 457-460. doi : 10.1016/j.crma.2008.02.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.02.023/

[1] D. Benboudjema; W. Pieczynski Unsupervised statistical segmentation of non stationary images using triplet Markov fields, IEEE Trans. Pattern Analysis and Machine Intelligence, Volume 29 (2007) no. 8, pp. 1367-1378

[2] O. Cappé; E. Moulines; T. Ryden Inference in Hidden Markov Models, Series in Statistics, Springer, 2005

[3] J.-P. Delmas An equivalence of the EM and ICE algorithm for exponential family, IEEE Trans. Signal Processing, Volume 45 (1997) no. 10, pp. 2613-2615

[4] S. Derrode; G. Mercier Multiscale oil slick segmentation from SAR image using a vector HMC model, Pattern Recognition, Volume 40 (2007) no. 3, pp. 1135-1147

[5] F. Destrempes; M. Mignotte; J.-F. Anger Localization of shapes using statistical models and stochastic optimization, IEEE Trans. Pattern Analysis and Machine Intelligence, Volume 29 (2007) no. 9, pp. 1603-1615

[6] P. Lanchantin; J. Lapuyade-Lahorgue; W. Pieczynski Unsupervised segmentation of triplet Markov chains hidden with long-memory noise, Signal Processing, Volume 88 (2008) no. 5, pp. 1134-1151

[7] G.J. McLachlan; T. Krishnan The EM Algorithm and Extension, Wiley, 1997

[8] A. Peng; W. Pieczynski Adaptive mixture estimation and unsupervised local Bayesian image segmentation, Graphical Models and Image Processing, Volume 57 (1995) no. 5, pp. 389-399

[9] W. Pieczynski Statistical image segmentation, Machine Graphics and Vision, Volume 1 (1992) no. 1/2, pp. 261-268

[10] D. Pierre-Loti-Viaud Random perturbations of recursive sequences with an application to an epidemic model, J. Appl. Probab., Volume 32 (1995), pp. 559-578

Cited by Sources:

Comments - Policy