The aim of this Note is to give a proof of a well-known fact: an asymptotic expansion of the isoperimetric profile of a Riemannian manifold for small volumes gives an asymptotic expansion of the Faber–Krahn profile for this same Riemannian manifold.
Nous donnons dans cette Note la preuve d'un résultat bien connu : un développement limité du profil isopérimétrique d'une variété riemannienne donne un développement limité du profil de Faber–Krahn de cette même variété.
Accepted:
Published online:
Olivier Druet 1
@article{CRMATH_2008__346_21-22_1163_0, author = {Olivier Druet}, title = {Asymptotic expansion of the {Faber{\textendash}Krahn} profile of a compact {Riemannian} manifold}, journal = {Comptes Rendus. Math\'ematique}, pages = {1163--1167}, publisher = {Elsevier}, volume = {346}, number = {21-22}, year = {2008}, doi = {10.1016/j.crma.2008.09.022}, language = {en}, }
Olivier Druet. Asymptotic expansion of the Faber–Krahn profile of a compact Riemannian manifold. Comptes Rendus. Mathématique, Volume 346 (2008) no. 21-22, pp. 1163-1167. doi : 10.1016/j.crma.2008.09.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.09.022/
[1] Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, vol. 1207, Springer-Verlag, 1986
[2] Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, vol. 115, Academic Press Inc., 1984
[3] Riemannian Geometry – A Modern Introduction, Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, 1993
[4] Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Amer. Math. Soc., Volume 130 (2002), pp. 2351-2361
[5] F. Pacard, P. Sicbaldi, Extremal domains for the first eigenvalue of the Laplace–Beltrami operator, Ann. Inst. Fourier, in press
Cited by Sources:
Comments - Policy