Comptes Rendus
Probability Theory
Finite time extinction for solutions to fast diffusion stochastic porous media equations
Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 81-84.

We prove that the solutions to fast diffusion stochastic porous media equations have finite time extinction with strictly positive probability.

Nous prouvons l'extinction avec une probabilité strictement positive pour les solutions des équations des milieux poreux avec diffusion rapide.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.11.018

Viorel Barbu 1; Giuseppe Da Prato 2; Michael Röckner 3, 4

1 Institute of Mathematics “Octav Mayer”, 700506 Iasi, Romania
2 Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
3 Faculty of Mathematics, University of Bielefeld, Germany
4 Department of Mathematics and Statistics, Purdue University, USA
@article{CRMATH_2009__347_1-2_81_0,
     author = {Viorel Barbu and Giuseppe Da Prato and Michael R\"ockner},
     title = {Finite time extinction for solutions to fast diffusion stochastic porous media equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {81--84},
     publisher = {Elsevier},
     volume = {347},
     number = {1-2},
     year = {2009},
     doi = {10.1016/j.crma.2008.11.018},
     language = {en},
}
TY  - JOUR
AU  - Viorel Barbu
AU  - Giuseppe Da Prato
AU  - Michael Röckner
TI  - Finite time extinction for solutions to fast diffusion stochastic porous media equations
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 81
EP  - 84
VL  - 347
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2008.11.018
LA  - en
ID  - CRMATH_2009__347_1-2_81_0
ER  - 
%0 Journal Article
%A Viorel Barbu
%A Giuseppe Da Prato
%A Michael Röckner
%T Finite time extinction for solutions to fast diffusion stochastic porous media equations
%J Comptes Rendus. Mathématique
%D 2009
%P 81-84
%V 347
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2008.11.018
%G en
%F CRMATH_2009__347_1-2_81_0
Viorel Barbu; Giuseppe Da Prato; Michael Röckner. Finite time extinction for solutions to fast diffusion stochastic porous media equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 81-84. doi : 10.1016/j.crma.2008.11.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.018/

[1] V. Barbu; G. Da Prato; M. Röckner Existence and uniqueness of nonnegative solutions to the stochastic porous media equation, Indiana Univ. Math. J., Volume 57 (2008), pp. 187-212

[2] V. Barbu, G. Da Prato, M. Röckner, Existence of strong solutions for stochastic porous media equation under general monotonicity conditions, Ann. Probab., in press

[3] V. Barbu, G. Da Prato, M. Röckner, Stochastic porous media equations and self-organized criticality, Comm. Math. Phys., in press

[4] J. Berryman; C. Holland Stability of the separable solution for fast diffusion, Arch. Rational Mech. Anal., Volume 74 (1980) no. 4, pp. 379-388

[5] J. Ren; M. Röckner; F.Y. Wang Stochastic generalized porous media and fast diffusion equations, J. Differential Equations, Volume 238 (2007) no. 1, pp. 118-152

[6] M. Röckner, F.Y. Wang, Non-monotone stochastic generalized porous media equations, J. Differential Equations, in press

Cited by Sources:

Comments - Policy