We show that, in geometrically connected modular curves associated with congruence subgroups of , one has equidistribution, towards the hyperbolic probability, of Galois orbits of the modular invariants associated with a level structure on elliptic curves within a given isogeny class.
Nous montrons que dans les composantes géométriques des courbes modulaires associées aux sous-groupes de congruence de , il y a équidistribution, vers la probabilité hyperbolique, des orbites sous Galois d'invariants modulaires formés à partir de structures de niveau sur des courbes elliptiques issues d'une même classe d'isogénie.
Accepted:
Published online:
Rodolphe Richard 1, 2
@article{CRMATH_2009__347_3-4_123_0, author = {Rodolphe Richard}, title = {R\'epartition galoisienne d'une classe d'isog\'enie de courbes elliptiques}, journal = {Comptes Rendus. Math\'ematique}, pages = {123--127}, publisher = {Elsevier}, volume = {347}, number = {3-4}, year = {2009}, doi = {10.1016/j.crma.2008.12.008}, language = {fr}, }
Rodolphe Richard. Répartition galoisienne d'une classe d'isogénie de courbes elliptiques. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 123-127. doi : 10.1016/j.crma.2008.12.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.008/
[1] Hecke operators and equidistribution of Hecke points, Invent. Math., Volume 144 (2001), pp. 327-351
[2] Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., Volume 92 (1988)
[3] Ergodic theoretic proof of equidistribution of Hecke points, Ergodic Theory Dynam. Systems, Volume 26 (2006) no. 1, pp. 163-167
[4] On ℓ-adic representations of Galois groups obtained from certain two-dimensional abelian varieties, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 21 (1974)
[5] Abelian ℓ-Adic Representations and Elliptic Curves, W.A. Benjamin, Inc., 1968
[6] Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972) no. 4, pp. 258-331
[7] Introduction to the Arithmetic Theory of Automorphic Forms, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, 1971 (Kanô Memorial Lectures, no. 1)
[8] The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 106, Springer, 1986
[9] Variation de la hauteur de Faltings dans une classe de -isogénie de courbe elliptique, Duke Math. J., Volume 97 (1999) no. 1, pp. 81-97
Cited by Sources:
Comments - Policy