Comptes Rendus
Partial Differential Equations
Local smoothing effects for the water-wave problem with surface tension
[Effets de lissage locaux pour le problème des ondes avec tension superficielle]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 159-162.

Nous considérons le problème des ondes avec une surface libre unidimensionnelle, de profondeur infinie, en utilisant sa formulation comme une équation non linéaire dispersive du second ordre. Nous mettons en évidence un effet de lissage local sous l'influence de la tension superficielle : en moyenne au fil du temps, les solutions acquièrent localement 1/4 de dérivée en plus de la régularité de l'état initial. L'analyse combine des méthodes d'énergie avec des techniques d'opérateurs Fourier intégraux.

The water-wave problem with a one-dimensional free surface of infinite depth is considered, based on the formulation as a second-order nonlinear dispersive equation. The local smoothing effects are established under the influence of surface tension, stating that on average in time solutions acquire locally 1/4 derivative of smoothness as compared to the initial state. The analysis combines energy methods with techniques of Fourier integral operators.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.12.010

Hans Christianson 1 ; Vera Mikyoung Hur 1 ; Gigliola Staffilani 1

1 Massachusetts Institute of Technology, Department of Mathematics 77, Massachusetts Avenue, Cambridge, MA 02139-4307, USA
@article{CRMATH_2009__347_3-4_159_0,
     author = {Hans Christianson and Vera Mikyoung Hur and Gigliola Staffilani},
     title = {Local smoothing effects for the water-wave problem with surface tension},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {159--162},
     publisher = {Elsevier},
     volume = {347},
     number = {3-4},
     year = {2009},
     doi = {10.1016/j.crma.2008.12.010},
     language = {en},
}
TY  - JOUR
AU  - Hans Christianson
AU  - Vera Mikyoung Hur
AU  - Gigliola Staffilani
TI  - Local smoothing effects for the water-wave problem with surface tension
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 159
EP  - 162
VL  - 347
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2008.12.010
LA  - en
ID  - CRMATH_2009__347_3-4_159_0
ER  - 
%0 Journal Article
%A Hans Christianson
%A Vera Mikyoung Hur
%A Gigliola Staffilani
%T Local smoothing effects for the water-wave problem with surface tension
%J Comptes Rendus. Mathématique
%D 2009
%P 159-162
%V 347
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2008.12.010
%G en
%F CRMATH_2009__347_3-4_159_0
Hans Christianson; Vera Mikyoung Hur; Gigliola Staffilani. Local smoothing effects for the water-wave problem with surface tension. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 159-162. doi : 10.1016/j.crma.2008.12.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.010/

[1] D.M. Ambrose; N. Masmoudi The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math., Volume 58 (2005), pp. 1287-1315

[2] D.M. Ambrose, N. Masmoudi, The zero surface tension limit of three-dimensional water waves, Indiana U. Math. J. (2008), in press

[3] H. Chihara Gain of regularity for semilinear Schrödinger equations, Math. Ann., Volume 315 (1999), pp. 529-567

[4] D. Christodoulou; H. Lindblad On the motion of the free surface of a liquid, Comm. Pure Appl. Math., Volume 53 (2000), pp. 1536-1602

[5] P. Constantin; J.-C. Saut Local smoothing properties of dispersive equations, J. Amer. Math. Soc., Volume 1 (1988), pp. 413-439

[6] D. Coutand; S. Shkoller Well posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., Volume 20 (2007), pp. 823-930

[7] W. Craig An existence theory for water waves and the Boussinesq ad Korteweg–de Vries scaling limits, Comm. Partial Differential Equations, Volume 10 (1985), pp. 787-1003

[8] W. Craig; T. Kappeler; W. Strauss Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., Volume 48 (1995), pp. 769-860

[9] S. Doi Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J., Volume 82 (1996), pp. 679-706

[10] T. Kano; T. Nishida Sur des ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ., Volume 19 (1979), pp. 335-370

[11] T. Kato On the Cauchy problem for the (generalized) Korteweg–de Vries equation, Studies in Applied Mathematics, vol. 8, Academic Press, 1983, pp. 93-128

[12] C.E. Kenig; G. Ponce; L. Vega Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., Volume 40 (1991), pp. 33-69

[13] C.E. Kenig; G. Ponce; L. Vega Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., Volume 134 (1998), pp. 489-545

[14] D. Lannes Well-posedness of the water-wave equations, J. Amer. Math. Soc., Volume 18 (2005), pp. 605-654

[15] H. Lindblad Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. of Math., Volume 162 (2005), pp. 109-194

[16] V.I. Nalimov The Cauchy–Poisson problem, Dinamika Splošn. Sredy Vyp. Dinamika Zidkost. so Svobod. Granicami, Volume 18 (1974), pp. 104-210 (254)

[17] L.V. Ovsiannikov Non local Cauchy problems in fluid dynamics, Actes du Congrès International des mathématiciens, Gauthier-Villars, 1971, pp. 137-142

[18] J. Shatah, C. Zeng, Local well-posedness for the fluid interface problems, 2008, preprint

[19] P. Sjölin Regularity of solutions to the Schrodinger equation, Duke Math. J., Volume 55 (1987), pp. 699-715

[20] L. Vega The Schrödinger equation: pointwise convergence to the initial data, Proc. Amer. Math. Soc., Volume 102 (1998), pp. 874-878

[21] S. Wu Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., Volume 130 (1997), pp. 39-72

[22] S. Wu Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., Volume 12 (1999), pp. 445-495

[23] H. Yosihara Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci., Volume 18 (1982), pp. 49-96

[24] H. Yosihara Capillary-gravity waves for an incompressible ideal fluid, J. Math. Kyoto Univ., Volume 23 (1983), pp. 649-694

Cité par Sources :

Commentaires - Politique