[Effets de lissage locaux pour le problème des ondes avec tension superficielle]
Nous considérons le problème des ondes avec une surface libre unidimensionnelle, de profondeur infinie, en utilisant sa formulation comme une équation non linéaire dispersive du second ordre. Nous mettons en évidence un effet de lissage local sous l'influence de la tension superficielle : en moyenne au fil du temps, les solutions acquièrent localement 1/4 de dérivée en plus de la régularité de l'état initial. L'analyse combine des méthodes d'énergie avec des techniques d'opérateurs Fourier intégraux.
The water-wave problem with a one-dimensional free surface of infinite depth is considered, based on the formulation as a second-order nonlinear dispersive equation. The local smoothing effects are established under the influence of surface tension, stating that on average in time solutions acquire locally 1/4 derivative of smoothness as compared to the initial state. The analysis combines energy methods with techniques of Fourier integral operators.
Accepté le :
Publié le :
Hans Christianson 1 ; Vera Mikyoung Hur 1 ; Gigliola Staffilani 1
@article{CRMATH_2009__347_3-4_159_0, author = {Hans Christianson and Vera Mikyoung Hur and Gigliola Staffilani}, title = {Local smoothing effects for the water-wave problem with surface tension}, journal = {Comptes Rendus. Math\'ematique}, pages = {159--162}, publisher = {Elsevier}, volume = {347}, number = {3-4}, year = {2009}, doi = {10.1016/j.crma.2008.12.010}, language = {en}, }
TY - JOUR AU - Hans Christianson AU - Vera Mikyoung Hur AU - Gigliola Staffilani TI - Local smoothing effects for the water-wave problem with surface tension JO - Comptes Rendus. Mathématique PY - 2009 SP - 159 EP - 162 VL - 347 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2008.12.010 LA - en ID - CRMATH_2009__347_3-4_159_0 ER -
%0 Journal Article %A Hans Christianson %A Vera Mikyoung Hur %A Gigliola Staffilani %T Local smoothing effects for the water-wave problem with surface tension %J Comptes Rendus. Mathématique %D 2009 %P 159-162 %V 347 %N 3-4 %I Elsevier %R 10.1016/j.crma.2008.12.010 %G en %F CRMATH_2009__347_3-4_159_0
Hans Christianson; Vera Mikyoung Hur; Gigliola Staffilani. Local smoothing effects for the water-wave problem with surface tension. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 159-162. doi : 10.1016/j.crma.2008.12.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.010/
[1] The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math., Volume 58 (2005), pp. 1287-1315
[2] D.M. Ambrose, N. Masmoudi, The zero surface tension limit of three-dimensional water waves, Indiana U. Math. J. (2008), in press
[3] Gain of regularity for semilinear Schrödinger equations, Math. Ann., Volume 315 (1999), pp. 529-567
[4] On the motion of the free surface of a liquid, Comm. Pure Appl. Math., Volume 53 (2000), pp. 1536-1602
[5] Local smoothing properties of dispersive equations, J. Amer. Math. Soc., Volume 1 (1988), pp. 413-439
[6] Well posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., Volume 20 (2007), pp. 823-930
[7] An existence theory for water waves and the Boussinesq ad Korteweg–de Vries scaling limits, Comm. Partial Differential Equations, Volume 10 (1985), pp. 787-1003
[8] Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., Volume 48 (1995), pp. 769-860
[9] Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J., Volume 82 (1996), pp. 679-706
[10] Sur des ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ., Volume 19 (1979), pp. 335-370
[11] On the Cauchy problem for the (generalized) Korteweg–de Vries equation, Studies in Applied Mathematics, vol. 8, Academic Press, 1983, pp. 93-128
[12] Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., Volume 40 (1991), pp. 33-69
[13] Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., Volume 134 (1998), pp. 489-545
[14] Well-posedness of the water-wave equations, J. Amer. Math. Soc., Volume 18 (2005), pp. 605-654
[15] Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. of Math., Volume 162 (2005), pp. 109-194
[16] The Cauchy–Poisson problem, Dinamika Splošn. Sredy Vyp. Dinamika Zidkost. so Svobod. Granicami, Volume 18 (1974), pp. 104-210 (254)
[17] Non local Cauchy problems in fluid dynamics, Actes du Congrès International des mathématiciens, Gauthier-Villars, 1971, pp. 137-142
[18] J. Shatah, C. Zeng, Local well-posedness for the fluid interface problems, 2008, preprint
[19] Regularity of solutions to the Schrodinger equation, Duke Math. J., Volume 55 (1987), pp. 699-715
[20] The Schrödinger equation: pointwise convergence to the initial data, Proc. Amer. Math. Soc., Volume 102 (1998), pp. 874-878
[21] Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., Volume 130 (1997), pp. 39-72
[22] Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., Volume 12 (1999), pp. 445-495
[23] Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci., Volume 18 (1982), pp. 49-96
[24] Capillary-gravity waves for an incompressible ideal fluid, J. Math. Kyoto Univ., Volume 23 (1983), pp. 649-694
Cité par Sources :
Commentaires - Politique