[Fonction de Bellman et le plongement bilinéaire pour des opérateurs de Schrödinger]
On considère un théorème de plongement bilinéaire pour une classe des opérateurs de Schrödinger sur . Le résultat ne depend pas de dimension et il est p-linéaire. On fait une esquisse de la démonstration basée sur trois observations concernant la fonction de Bellman spécifique.
We discuss bilinear embedding theorems for a certain class of Schrödinger operators on . The obtained estimates are dimension-free and linear in p. We outline a uniform proof of the theorem which relies on establishing three crucial properties of the concrete Bellman function we consider.
Accepté le :
Publié le :
Oliver Dragičević 1 ; Alexander Volberg 2, 3
@article{CRMATH_2009__347_9-10_537_0, author = {Oliver Dragi\v{c}evi\'c and Alexander Volberg}, title = {Bellman function and bilinear embedding theorem for {Schr\"odinger-type} operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {537--540}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.004}, language = {en}, }
TY - JOUR AU - Oliver Dragičević AU - Alexander Volberg TI - Bellman function and bilinear embedding theorem for Schrödinger-type operators JO - Comptes Rendus. Mathématique PY - 2009 SP - 537 EP - 540 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.02.004 LA - en ID - CRMATH_2009__347_9-10_537_0 ER -
Oliver Dragičević; Alexander Volberg. Bellman function and bilinear embedding theorem for Schrödinger-type operators. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 537-540. doi : 10.1016/j.crma.2009.02.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.004/
[1] Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 2004
[2] A. Carbonaro, Functional calculus for some perturbations of the Ornstein–Uhlenbeck operator, Math. Z., in press
[3] Bellman functions and dimensionless estimates of Littlewood–Paley type, J. Oper. Theory, Volume 56 (2006) no. 1, pp. 167-198
[4] Linear dimension-free estimates for the Hermite–Riesz transforms | arXiv
[5] Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995
[6] The Hunt for a Bellman function: applications to estimates of singular integral operators and to other classical problems in harmonic analysis, St. Petersburg Math. J., Volume 8 (1997) no. 5, pp. 721-824
[7] Kato's inequality and the comparison of semigroups, J. Funct. Anal., Volume 32 (1979) no. 1, pp. 97-101
Cité par Sources :
Commentaires - Politique