[Homogénéisation du système de Maxwell 3D près des résonances et magnétisme artificiel]
Il est maintenant bien connu que l'homogénéisation d'un réseau périodique de fibres diélectriques de forte permittivité peut conduire à une perméabilité effective négative sur certaines bandes de fréquences. Cependant ce résultat basé sur l'analyse d'un résonateur en dimension deux ne pouvait être justifié sans l'hypothèse de polarisation du champ magnétique et en pratique seuls des obstacles cylindriques infinis pouvaient être considérés. Dans cette note nous proposons une extension complète au cas 3D basée sur une nouvelle notion de moyennisation du champ magnétique. Nous obtenons un problème spectral vectoriel sur la cellule unité qui décrit l'effet de résonance et conduit à un tenseur de perméabilité effective dont les parties réelles des valeurs propres changent de signe suivant la fréquence.
It is now well known that the homogenization of a periodic array of parallel dielectric fibers with suitably scaled high permittivity can lead to a possibly negative frequency dependent effective permeability. However this result based on a two-dimensional micro resonator problem on the section of the fibers holds merely in the case of polarized magnetic fields, reducing thus its applications to infinite cylindrical obstacles. In this Note we propose a full 3D extension of previous asymptotic analysis based on a new averaging method for the magnetic field. We evidence a vectorial spectral problem on the periodic cell which accounts for micro-resonance effects and leads to a 3D negative effective permeability tensor. This suggests that periodic bulk dielectric inclusions could be an efficient alternative to the very popular metallic split-ring structure proposed by Pendry.
Accepté le :
Publié le :
Guy Bouchitté 1 ; Christophe Bourel 1 ; Didier Felbacq 2
@article{CRMATH_2009__347_9-10_571_0, author = {Guy Bouchitt\'e and Christophe Bourel and Didier Felbacq}, title = {Homogenization of the {3D} {Maxwell} system near resonances and artificial magnetism}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--576}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.027}, language = {en}, }
TY - JOUR AU - Guy Bouchitté AU - Christophe Bourel AU - Didier Felbacq TI - Homogenization of the 3D Maxwell system near resonances and artificial magnetism JO - Comptes Rendus. Mathématique PY - 2009 SP - 571 EP - 576 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.02.027 LA - en ID - CRMATH_2009__347_9-10_571_0 ER -
%0 Journal Article %A Guy Bouchitté %A Christophe Bourel %A Didier Felbacq %T Homogenization of the 3D Maxwell system near resonances and artificial magnetism %J Comptes Rendus. Mathématique %D 2009 %P 571-576 %V 347 %N 9-10 %I Elsevier %R 10.1016/j.crma.2009.02.027 %G en %F CRMATH_2009__347_9-10_571_0
Guy Bouchitté; Christophe Bourel; Didier Felbacq. Homogenization of the 3D Maxwell system near resonances and artificial magnetism. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 571-576. doi : 10.1016/j.crma.2009.02.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.027/
[1] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992), pp. 1482-1518
[2] Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 5, pp. 377-382
[3] C. Bourel, in progress
[4] Left handed media and homogenization of photonic crystals, Opt. Lett., Volume 30 (2005), p. 10
[5] Theory of mesoscopic magnetism in photonic crystals, Phys. Rev. Lett., Volume 94 (2005), p. 183902
[6] Negative refraction in periodic and random photonic crystals, New J. Phys., Volume 7 (2005) (159, 10.1088)
[7] Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., Volume 14 (2002), pp. 6383-6394
[8] Magnetism and homogenization of microresonators, Multiscale Model. Simul., Volume 7 (2008) no. 1, pp. 62-92
[9] Multiscale modeling of elastic waves: theoretical justification and numerical simulation of band gaps, Multiscale Model. Simul., Volume 7 (2008) no. 1, pp. 1-21
- Spectral analysis of metamaterials in curved manifolds, Journal of Physics A: Mathematical and Theoretical, Volume 58 (2025) no. 2, p. 32 (Id/No 025202) | DOI:10.1088/1751-8121/ad9dc5 | Zbl:7974045
- Homogenization of Helmholtz equation in a periodic layer to study Faraday cage-like shielding effects, Complex Variables and Elliptic Equations, Volume 69 (2024) no. 4, pp. 607-625 | DOI:10.1080/17476933.2022.2155637 | Zbl:1536.35029
- Optimization of plasmonic metasurfaces: a homogenization-based design, Journal of Computational Physics, Volume 495 (2023), p. 21 (Id/No 112553) | DOI:10.1016/j.jcp.2023.112553 | Zbl:7766254
- Homogenization of Maxwell's equations and related scalar problems with sign-changing coefficients, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 30 (2022) no. 5, pp. 1075-1119 | DOI:10.5802/afst.1694 | Zbl:1489.78013
- The geometric average of curl-free fields in periodic geometries, Analysis (München), Volume 41 (2021) no. 3, pp. 179-197 | DOI:10.1515/anly-2020-0053 | Zbl:1472.35030
- Effective behaviour of critical-contrast PDEs: micro-resonances, frequency conversion, and time dispersive properties. I, Communications in Mathematical Physics, Volume 375 (2020) no. 3, pp. 1833-1884 | DOI:10.1007/s00220-020-03696-2 | Zbl:1462.35040
- Limiting boundary correctors for periodic microstructures and inverse homogenization series, Inverse Problems, Volume 36 (2020) no. 6, p. 27 (Id/No 065009) | DOI:10.1088/1361-6420/ab8bc6 | Zbl:1441.35025
- Effective resonant model and simulations in the time-domain of wave scattering from a periodic row of highly-contrasted inclusions, Journal of Elasticity, Volume 142 (2020) no. 1, pp. 53-82 | DOI:10.1007/s10659-020-09789-2 | Zbl:1456.74093
- Mathematical analysis of transmission properties of electromagnetic meta-materials, Networks and Heterogeneous Media, Volume 15 (2020) no. 1, pp. 29-56 | DOI:10.3934/nhm.2020002 | Zbl:1441.35029
- , Active Photonic Platforms XI (2019), p. 29 | DOI:10.1117/12.2528770
- Heterogeneous multiscale method for the Maxwell equations with high contrast, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 1, pp. 35-61 | DOI:10.1051/m2an/2018064 | Zbl:1422.65415
- Scattering by a bounded highly oscillating periodic medium and the effect of boundary correctors, SIAM Journal on Applied Mathematics, Volume 79 (2019) no. 4, pp. 1448-1474 | DOI:10.1137/19m1237089 | Zbl:1419.35238
- , Active Photonic Platforms X (2018), p. 81 | DOI:10.1117/12.2320277
- Effective Maxwell's equations in general periodic microstructures, Applicable Analysis, Volume 97 (2018) no. 13, pp. 2210-2230 | DOI:10.1080/00036811.2017.1359563 | Zbl:1401.35286
- Effective Maxwell's equations for perfectly conducting split ring resonators, Archive for Rational Mechanics and Analysis, Volume 229 (2018) no. 3, pp. 1197-1221 | DOI:10.1007/s00205-018-1237-1 | Zbl:1402.35272
- Generalized Sheet Transition Conditions for a Metascreen—A Fishnet Metasurface, IEEE Transactions on Antennas and Propagation, Volume 66 (2018) no. 5, p. 2414 | DOI:10.1109/tap.2018.2809620
- An indefinite Laplacian on a rectangle, Journal d'Analyse Mathématique, Volume 134 (2018) no. 2, pp. 501-522 | DOI:10.1007/s11854-018-0015-1 | Zbl:1402.35184
- On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials, Mathematics of Computation, Volume 87 (2018) no. 314, pp. 2775-2810 | DOI:10.1090/mcom/3307 | Zbl:1404.35427
- , Metamaterials, Metadevices, and Metasystems 2018 (2018), p. 98 | DOI:10.1117/12.2320307
- A New Heterogeneous Multiscale Method for the Helmholtz Equation with High Contrast, Multiscale Modeling Simulation, Volume 16 (2018) no. 1, p. 385 | DOI:10.1137/16m1108820
- Localized orthogonal decomposition for two-scale Helmholtz-type problems, AIMS Mathematics, Volume 2 (2017) no. 3, pp. 458-478 | DOI:10.3934/math.2017.2.458 | Zbl:1427.65374
- , Active Photonic Platforms IX (2017), p. 81 | DOI:10.1117/12.2272921
- Homogenization near resonances and artificial magnetism in three dimensional dielectric metamaterials, Archive for Rational Mechanics and Analysis, Volume 225 (2017) no. 3, pp. 1233-1277 | DOI:10.1007/s00205-017-1132-1 | Zbl:1375.35516
- Mathematical models for dispersive electromagnetic waves: an overview, Computers Mathematics with Applications, Volume 74 (2017) no. 11, pp. 2792-2830 | DOI:10.1016/j.camwa.2017.07.025 | Zbl:1397.78004
- Effective acoustic properties of a meta-material consisting of small Helmholtz resonators, Discrete and Continuous Dynamical Systems. Series S, Volume 10 (2017) no. 4, pp. 815-835 | DOI:10.3934/dcdss.2017041 | Zbl:1371.78345
- Resonance meets homogenization. Construction of meta-materials with astonishing properties, Jahresbericht der Deutschen Mathematiker-Vereinigung (DMV), Volume 119 (2017) no. 1, pp. 31-51 | DOI:10.1365/s13291-016-0153-2 | Zbl:1359.78029
- Two scale homogenization of a row of locally resonant inclusions - the case of anti-plane shear waves, Journal of the Mechanics and Physics of Solids, Volume 106 (2017), p. 80 | DOI:10.1016/j.jmps.2017.05.001
- , Nanostructured Thin Films X (2017), p. 15 | DOI:10.1117/12.2273405
- , Quantum Photonic Devices (2017), p. 10 | DOI:10.1117/12.2272927
- , 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE) (2016), p. 187 | DOI:10.1109/isape.2016.7833950
- A Homogenization Technique for Obtaining Generalized Sheet-Transition Conditions for a Metafilm Embedded in a Magnetodielectric Interface, IEEE Transactions on Antennas and Propagation, Volume 64 (2016) no. 11, p. 4671 | DOI:10.1109/tap.2016.2600764
- , Metamaterials, Metadevices, and Metasystems 2016, Volume 9918 (2016), p. 99182T | DOI:10.1117/12.2237119
- Full two-scale asymptotic expansion and higher-order constitutive laws in the homogenization of the system of quasi-static Maxwell equations, Multiscale Modeling Simulation, Volume 14 (2016) no. 4, pp. 1513-1539 | DOI:10.1137/15m1042103 | Zbl:1379.35305
- , Nanostructured Thin Films IX, Volume 9929 (2016), p. 99290N | DOI:10.1117/12.2237337
- A negative index meta-material for Maxwell's equations, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 6, pp. 4155-4174 | DOI:10.1137/16m1064246 | Zbl:1356.78136
- Upscaling of Helmholtz Equation Originating in Transmission through Metallic Gratings in Metamaterials, The Scientific World Journal, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/7436136
- Resonant effects in random dielectric structures, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 21 (2015) no. 1, pp. 217-246 | DOI:10.1051/cocv/2014026 | Zbl:1315.35020
- The low-frequency spectrum of small Helmholtz resonators, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 471 (2015) no. 2174, p. 20140339 | DOI:10.1098/rspa.2014.0339
- Interior regularity estimates in high conductivity homogenization and application, Archive for Rational Mechanics and Analysis, Volume 207 (2013) no. 1, pp. 75-137 | DOI:10.1007/s00205-012-0553-0 | Zbl:1269.78021
- WITHDRAWN: Layer homogenization of a 2D periodic array of scatterers, Metamaterials (2013) | DOI:10.1016/j.metmat.2013.05.001
- Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings, Networks Heterogeneous Media, Volume 8 (2013) no. 4, p. 857 | DOI:10.3934/nhm.2013.8.857
- Effective Maxwell Equations in a Geometry with Flat Rings of Arbitrary Shape, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 3, p. 1460 | DOI:10.1137/120874321
- Multiscale Nanorod Metamaterials and Realizable Permittivity Tensors, Communications in Computational Physics, Volume 11 (2012) no. 2, p. 489 | DOI:10.4208/cicp.171209.110810s
- , Advanced Photonics (2011), p. IMC1 | DOI:10.1364/iprsn.2011.imc1
- On electromagnetic characterization and homogenization of nanostructured metamaterials, Journal of Optics, Volume 13 (2011) no. 1, p. 013001 | DOI:10.1088/2040-8978/13/1/013001
- Homogenization of nonlocal wire metamaterial via a renormalization approach, Journal of the Optical Society of America B, Volume 28 (2011) no. 5, p. 1275 | DOI:10.1364/josab.28.001275
Cité par 46 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier