Comptes Rendus
Mathematical Physics/Partial Differential Equations
Homogenization of the 3D Maxwell system near resonances and artificial magnetism
[Homogénéisation du système de Maxwell 3D près des résonances et magnétisme artificiel]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 571-576.

Il est maintenant bien connu que l'homogénéisation d'un réseau périodique de fibres diélectriques de forte permittivité peut conduire à une perméabilité effective négative sur certaines bandes de fréquences. Cependant ce résultat basé sur l'analyse d'un résonateur en dimension deux ne pouvait être justifié sans l'hypothèse de polarisation du champ magnétique et en pratique seuls des obstacles cylindriques infinis pouvaient être considérés. Dans cette note nous proposons une extension complète au cas 3D basée sur une nouvelle notion de moyennisation du champ magnétique. Nous obtenons un problème spectral vectoriel sur la cellule unité qui décrit l'effet de résonance et conduit à un tenseur de perméabilité effective dont les parties réelles des valeurs propres changent de signe suivant la fréquence.

It is now well known that the homogenization of a periodic array of parallel dielectric fibers with suitably scaled high permittivity can lead to a possibly negative frequency dependent effective permeability. However this result based on a two-dimensional micro resonator problem on the section of the fibers holds merely in the case of polarized magnetic fields, reducing thus its applications to infinite cylindrical obstacles. In this Note we propose a full 3D extension of previous asymptotic analysis based on a new averaging method for the magnetic field. We evidence a vectorial spectral problem on the periodic cell which accounts for micro-resonance effects and leads to a 3D negative effective permeability tensor. This suggests that periodic bulk dielectric inclusions could be an efficient alternative to the very popular metallic split-ring structure proposed by Pendry.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.02.027

Guy Bouchitté 1 ; Christophe Bourel 1 ; Didier Felbacq 2

1 Institut IMATH, Université de Toulon et du Var, BP 20132, 83957 La Garde cedex, France
2 Groupe d'étude des semiconducteurs, Université de Montpellier 2, place Eugène-Bataillon, CC 074, 34095 Montpellier cedex 05, France
@article{CRMATH_2009__347_9-10_571_0,
     author = {Guy Bouchitt\'e and Christophe Bourel and Didier Felbacq},
     title = {Homogenization of the {3D} {Maxwell} system near resonances and artificial magnetism},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {571--576},
     publisher = {Elsevier},
     volume = {347},
     number = {9-10},
     year = {2009},
     doi = {10.1016/j.crma.2009.02.027},
     language = {en},
}
TY  - JOUR
AU  - Guy Bouchitté
AU  - Christophe Bourel
AU  - Didier Felbacq
TI  - Homogenization of the 3D Maxwell system near resonances and artificial magnetism
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 571
EP  - 576
VL  - 347
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2009.02.027
LA  - en
ID  - CRMATH_2009__347_9-10_571_0
ER  - 
%0 Journal Article
%A Guy Bouchitté
%A Christophe Bourel
%A Didier Felbacq
%T Homogenization of the 3D Maxwell system near resonances and artificial magnetism
%J Comptes Rendus. Mathématique
%D 2009
%P 571-576
%V 347
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2009.02.027
%G en
%F CRMATH_2009__347_9-10_571_0
Guy Bouchitté; Christophe Bourel; Didier Felbacq. Homogenization of the 3D Maxwell system near resonances and artificial magnetism. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 571-576. doi : 10.1016/j.crma.2009.02.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.027/

[1] G. Allaire Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992), pp. 1482-1518

[2] G. Bouchitté; D. Felbacq Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 5, pp. 377-382

[3] C. Bourel, in progress

[4] D. Felbacq; G. Bouchitté Left handed media and homogenization of photonic crystals, Opt. Lett., Volume 30 (2005), p. 10

[5] D. Felbacq; G. Bouchitté Theory of mesoscopic magnetism in photonic crystals, Phys. Rev. Lett., Volume 94 (2005), p. 183902

[6] D. Felbacq; G. Bouchitté Negative refraction in periodic and random photonic crystals, New J. Phys., Volume 7 (2005) (159, 10.1088)

[7] S. O'Brien; J.B. Pendry Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., Volume 14 (2002), pp. 6383-6394

[8] R.V. Kohn; S. Shipman Magnetism and homogenization of microresonators, Multiscale Model. Simul., Volume 7 (2008) no. 1, pp. 62-92

[9] A. Avila; G. Griso; B. Miara; E. Rohan Multiscale modeling of elastic waves: theoretical justification and numerical simulation of band gaps, Multiscale Model. Simul., Volume 7 (2008) no. 1, pp. 1-21

  • Tomáš Faikl Spectral analysis of metamaterials in curved manifolds, Journal of Physics A: Mathematical and Theoretical, Volume 58 (2025) no. 2, p. 32 (Id/No 025202) | DOI:10.1088/1751-8121/ad9dc5 | Zbl:7974045
  • S. Aiyappan; Georges Griso; Julia Orlik Homogenization of Helmholtz equation in a periodic layer to study Faraday cage-like shielding effects, Complex Variables and Elliptic Equations, Volume 69 (2024) no. 4, pp. 607-625 | DOI:10.1080/17476933.2022.2155637 | Zbl:1536.35029
  • Nicolas Lebbe; Kim Pham; Agnès Maurel Optimization of plasmonic metasurfaces: a homogenization-based design, Journal of Computational Physics, Volume 495 (2023), p. 21 (Id/No 112553) | DOI:10.1016/j.jcp.2023.112553 | Zbl:7766254
  • Renata Bunoiu; Lucas Chesnel; Karim Ramdani; Mahran Rihani Homogenization of Maxwell's equations and related scalar problems with sign-changing coefficients, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 30 (2022) no. 5, pp. 1075-1119 | DOI:10.5802/afst.1694 | Zbl:1489.78013
  • Klaas Hendrik Poelstra; Ben Schweizer; Maik Urban The geometric average of curl-free fields in periodic geometries, Analysis (München), Volume 41 (2021) no. 3, pp. 179-197 | DOI:10.1515/anly-2020-0053 | Zbl:1472.35030
  • Kirill D. Cherednichenko; Yulia Yu. Ershova; Alexander V. Kiselev Effective behaviour of critical-contrast PDEs: micro-resonances, frequency conversion, and time dispersive properties. I, Communications in Mathematical Physics, Volume 375 (2020) no. 3, pp. 1833-1884 | DOI:10.1007/s00220-020-03696-2 | Zbl:1462.35040
  • Fioralba Cakoni; Shari Moskow; Tayler Pangburn Limiting boundary correctors for periodic microstructures and inverse homogenization series, Inverse Problems, Volume 36 (2020) no. 6, p. 27 (Id/No 065009) | DOI:10.1088/1361-6420/ab8bc6 | Zbl:1441.35025
  • Marie Touboul; Kim Pham; Agnès Maurel; Jean-Jacques Marigo; Bruno Lombard; Cédric Bellis Effective resonant model and simulations in the time-domain of wave scattering from a periodic row of highly-contrasted inclusions, Journal of Elasticity, Volume 142 (2020) no. 1, pp. 53-82 | DOI:10.1007/s10659-020-09789-2 | Zbl:1456.74093
  • Mario Ohlberger; Ben Schweizer; Maik Urban; Barbara Verfürth Mathematical analysis of transmission properties of electromagnetic meta-materials, Networks and Heterogeneous Media, Volume 15 (2020) no. 1, pp. 29-56 | DOI:10.3934/nhm.2020002 | Zbl:1441.35029
  • Didier Felbacq; Emmanuel Rousseau; Emmanuel Kling; Ganapathi S. Subramania; Stavroula Foteinopoulou, Active Photonic Platforms XI (2019), p. 29 | DOI:10.1117/12.2528770
  • Barbara Verfürth Heterogeneous multiscale method for the Maxwell equations with high contrast, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 1, pp. 35-61 | DOI:10.1051/m2an/2018064 | Zbl:1422.65415
  • Fioralba Cakoni; Bojan B. Guzina; Shari Moskow; Tayler Pangburn Scattering by a bounded highly oscillating periodic medium and the effect of boundary correctors, SIAM Journal on Applied Mathematics, Volume 79 (2019) no. 4, pp. 1448-1474 | DOI:10.1137/19m1237089 | Zbl:1419.35238
  • Didier Felbacq; Emmanuel Rousseau; Ganapathi S. Subramania; Stavroula Foteinopoulou, Active Photonic Platforms X (2018), p. 81 | DOI:10.1117/12.2320277
  • Ben Schweizer; M. Urban Effective Maxwell's equations in general periodic microstructures, Applicable Analysis, Volume 97 (2018) no. 13, pp. 2210-2230 | DOI:10.1080/00036811.2017.1359563 | Zbl:1401.35286
  • Robert Lipton; Ben Schweizer Effective Maxwell's equations for perfectly conducting split ring resonators, Archive for Rational Mechanics and Analysis, Volume 229 (2018) no. 3, pp. 1197-1221 | DOI:10.1007/s00205-018-1237-1 | Zbl:1402.35272
  • Christopher L. Holloway; Edward F. Kuester Generalized Sheet Transition Conditions for a Metascreen—A Fishnet Metasurface, IEEE Transactions on Antennas and Propagation, Volume 66 (2018) no. 5, p. 2414 | DOI:10.1109/tap.2018.2809620
  • Jussi Behrndt; David Krejčiřík An indefinite Laplacian on a rectangle, Journal d'Analyse Mathématique, Volume 134 (2018) no. 2, pp. 501-522 | DOI:10.1007/s11854-018-0015-1 | Zbl:1402.35184
  • Éliane Bécache; Patrick Joly; Valentin Vinoles On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials, Mathematics of Computation, Volume 87 (2018) no. 314, pp. 2775-2810 | DOI:10.1090/mcom/3307 | Zbl:1404.35427
  • Didier Felbacq; Anthony Gourdin; Patrice Genevet; Nader Engheta; Mikhail A. Noginov; Nikolay I. Zheludev, Metamaterials, Metadevices, and Metasystems 2018 (2018), p. 98 | DOI:10.1117/12.2320307
  • Mario Ohlberger; Barbara Verfurth A New Heterogeneous Multiscale Method for the Helmholtz Equation with High Contrast, Multiscale Modeling Simulation, Volume 16 (2018) no. 1, p. 385 | DOI:10.1137/16m1108820
  • Mario Ohlberger; Barbara Verfürth Localized orthogonal decomposition for two-scale Helmholtz-type problems, AIMS Mathematics, Volume 2 (2017) no. 3, pp. 458-478 | DOI:10.3934/math.2017.2.458 | Zbl:1427.65374
  • Didier Felbacq; Emmanuel Rousseau; Ganapathi S. Subramania; Stavroula Foteinopoulou, Active Photonic Platforms IX (2017), p. 81 | DOI:10.1117/12.2272921
  • Guy Bouchitté; Christophe Bourel; Didier Felbacq Homogenization near resonances and artificial magnetism in three dimensional dielectric metamaterials, Archive for Rational Mechanics and Analysis, Volume 225 (2017) no. 3, pp. 1233-1277 | DOI:10.1007/s00205-017-1132-1 | Zbl:1375.35516
  • Maxence Cassier; Patrick Joly; Maryna Kachanovska Mathematical models for dispersive electromagnetic waves: an overview, Computers Mathematics with Applications, Volume 74 (2017) no. 11, pp. 2792-2830 | DOI:10.1016/j.camwa.2017.07.025 | Zbl:1397.78004
  • Agnes Lamacz; Ben Schweizer Effective acoustic properties of a meta-material consisting of small Helmholtz resonators, Discrete and Continuous Dynamical Systems. Series S, Volume 10 (2017) no. 4, pp. 815-835 | DOI:10.3934/dcdss.2017041 | Zbl:1371.78345
  • Ben Schweizer Resonance meets homogenization. Construction of meta-materials with astonishing properties, Jahresbericht der Deutschen Mathematiker-Vereinigung (DMV), Volume 119 (2017) no. 1, pp. 31-51 | DOI:10.1365/s13291-016-0153-2 | Zbl:1359.78029
  • Kim Pham; Agnès Maurel; Jean-Jacques Marigo Two scale homogenization of a row of locally resonant inclusions - the case of anti-plane shear waves, Journal of the Mechanics and Physics of Solids, Volume 106 (2017), p. 80 | DOI:10.1016/j.jmps.2017.05.001
  • Didier Felbacq; Emmanuel Kling; Tom G. Mackay; Akhlesh Lakhtakia; Yi-Jun Jen, Nanostructured Thin Films X (2017), p. 15 | DOI:10.1117/12.2273405
  • Didier Felbacq; Emmanuel Rousseau; Mario Agio; Kartik Srinivasan; Cesare Soci, Quantum Photonic Devices (2017), p. 10 | DOI:10.1117/12.2272927
  • Zaitao Zhang; Zetai Yu; Helin Yang; Xiaojun Huang, 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE) (2016), p. 187 | DOI:10.1109/isape.2016.7833950
  • Christopher L. Holloway; Edward F. Kuester A Homogenization Technique for Obtaining Generalized Sheet-Transition Conditions for a Metafilm Embedded in a Magnetodielectric Interface, IEEE Transactions on Antennas and Propagation, Volume 64 (2016) no. 11, p. 4671 | DOI:10.1109/tap.2016.2600764
  • Nader Engheta; Mikhail A. Noginov; Nikolay I. Zheludev; Didier Felbacq, Metamaterials, Metadevices, and Metasystems 2016, Volume 9918 (2016), p. 99182T | DOI:10.1117/12.2237119
  • Kirill D. Cherednichenko; James A. Evans Full two-scale asymptotic expansion and higher-order constitutive laws in the homogenization of the system of quasi-static Maxwell equations, Multiscale Modeling Simulation, Volume 14 (2016) no. 4, pp. 1513-1539 | DOI:10.1137/15m1042103 | Zbl:1379.35305
  • Akhlesh Lakhtakia; Tom G. Mackay; Motofumi Suzuki; Guy Bouchitté; Christophe Bourel; Didier Felbacq; Emmanuel Kling, Nanostructured Thin Films IX, Volume 9929 (2016), p. 99290N | DOI:10.1117/12.2237337
  • Agnes Lamacz; Ben Schweizer A negative index meta-material for Maxwell's equations, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 6, pp. 4155-4174 | DOI:10.1137/16m1064246 | Zbl:1356.78136
  • Hari Shankar Mahato Upscaling of Helmholtz Equation Originating in Transmission through Metallic Gratings in Metamaterials, The Scientific World Journal, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/7436136
  • Guy Bouchitté; Christophe Bourel; Luigi Manca Resonant effects in random dielectric structures, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 21 (2015) no. 1, pp. 217-246 | DOI:10.1051/cocv/2014026 | Zbl:1315.35020
  • B. Schweizer The low-frequency spectrum of small Helmholtz resonators, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 471 (2015) no. 2174, p. 20140339 | DOI:10.1098/rspa.2014.0339
  • Marc Briane; Yves Capdeboscq; Luc Nguyen Interior regularity estimates in high conductivity homogenization and application, Archive for Rational Mechanics and Analysis, Volume 207 (2013) no. 1, pp. 75-137 | DOI:10.1007/s00205-012-0553-0 | Zbl:1269.78021
  • Didier Felbacq WITHDRAWN: Layer homogenization of a 2D periodic array of scatterers, Metamaterials (2013) | DOI:10.1016/j.metmat.2013.05.001
  • Guy Bouchitté; Ben Schweizer Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings, Networks Heterogeneous Media, Volume 8 (2013) no. 4, p. 857 | DOI:10.3934/nhm.2013.8.857
  • Agnes Lamacz; Ben Schweizer Effective Maxwell Equations in a Geometry with Flat Rings of Arbitrary Shape, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 3, p. 1460 | DOI:10.1137/120874321
  • G. Bouchitté; C. Bourel Multiscale Nanorod Metamaterials and Realizable Permittivity Tensors, Communications in Computational Physics, Volume 11 (2012) no. 2, p. 489 | DOI:10.4208/cicp.171209.110810s
  • Didier Felbacq; Guy Bouchitté, Advanced Photonics (2011), p. IMC1 | DOI:10.1364/iprsn.2011.imc1
  • C R Simovski On electromagnetic characterization and homogenization of nanostructured metamaterials, Journal of Optics, Volume 13 (2011) no. 1, p. 013001 | DOI:10.1088/2040-8978/13/1/013001
  • A. I. Căbuz; A. Nicolet; F. Zolla; D. Felbacq; G. Bouchitté Homogenization of nonlocal wire metamaterial via a renormalization approach, Journal of the Optical Society of America B, Volume 28 (2011) no. 5, p. 1275 | DOI:10.1364/josab.28.001275

Cité par 46 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: