[Motifs mixtes et la filtration par les tranches]
Nous construisons plusieurs structures des modèles de Quillen dans la catégorie de Jardine Spt des T-spectres symétriques motiviques [J.F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000) 445–553], tel que leur catégories d'homotopie associées sont naturellement isomorphiques à la filtration par les tranches de Voevodsky [V. Voevodsky, Open problems in the motivic stable homotopy theory. I, in: Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., Irvine, CA, 1998]. Nous prouvons une conjecture de Voevodsky [V. Voevodsky, Open problems in the motivic stable homotopy theory. I, in: Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., Irvine, CA, 1998], laquelle affirme que sur un corps parfait tous les tranches
We construct several Quillen model structures in Jardine's category Spt of motivic symmetric T-spectra [J.F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000) 445–553], such that their associated homotopy categories are naturally isomorphic to Voevodsky's slice filtration [V. Voevodsky, Open problems in the motivic stable homotopy theory. I, in: Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., Irvine, CA, 1998]. We prove a conjecture of Voevodsky [V. Voevodsky, Open problems in the motivic stable homotopy theory. I, in: Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., Irvine, CA, 1998], which says that over a perfect field all the slices
Accepté le :
Publié le :
Pablo Pelaez 1
@article{CRMATH_2009__347_9-10_541_0, author = {Pablo Pelaez}, title = {Mixed motives and the slice filtration}, journal = {Comptes Rendus. Math\'ematique}, pages = {541--544}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.028}, language = {en}, }
Pablo Pelaez. Mixed motives and the slice filtration. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 541-544. doi : 10.1016/j.crma.2009.02.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.028/
[1] The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4), Volume 35 (2002), pp. 773-875
[2] Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003
[3] Model Categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999
[4] Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra, Volume 165 (2001), pp. 63-127
[5] M. Hovey, Monoidal model categories, preprint, 1998
[6] Motivic symmetric spectra, Doc. Math., Volume 5 (2000), pp. 445-553
[7] The Homotopy Coniveau Tower, J. Topol., Volume 1 (2008), pp. 217-267
[8] Products in exact couples, Ann. of Math. (2), Volume 59 (1954), pp. 558-569
[9] Triangulated Categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001
[10] P. Pelaez, Multiplicative properties of the slice filtration, preprint, 2008
[11] Modules over motivic cohomology, Adv. Math., Volume 219 (2008), pp. 689-727
[12] On the zero slice of the sphere spectrum, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 106-115
[13] V. Voevodsky, Open problems in the motivic stable homotopy theory. I, in: Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., Irvine, CA, 1998
Cité par Sources :
Commentaires - Politique