[Motifs mixtes et la filtration par les tranches]
Nous construisons plusieurs structures des modèles de Quillen dans la catégorie de Jardine Spt des T-spectres symétriques motiviques [J.F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000) 445–553], tel que leur catégories d'homotopie associées sont naturellement isomorphiques à la filtration par les tranches de Voevodsky [V. Voevodsky, Open problems in the motivic stable homotopy theory. I, in: Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., Irvine, CA, 1998]. Nous prouvons une conjecture de Voevodsky [V. Voevodsky, Open problems in the motivic stable homotopy theory. I, in: Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., Irvine, CA, 1998], laquelle affirme que sur un corps parfait tous les tranches sont canoniquement modules dans Spt sur le spectre motivique d'Eilenberg–MacLane . Si le corps est de charactéristique zéro, nous obtenons que les tranches sont motifs grands au sens de Voevodsky. Nous montrons aussi que le produit « smash » dans Spt induit des structures multiplicatives sur la suite spectrale motivique de Atiyah–Hirzebruch.
We construct several Quillen model structures in Jardine's category Spt of motivic symmetric T-spectra [J.F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000) 445–553], such that their associated homotopy categories are naturally isomorphic to Voevodsky's slice filtration [V. Voevodsky, Open problems in the motivic stable homotopy theory. I, in: Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., Irvine, CA, 1998]. We prove a conjecture of Voevodsky [V. Voevodsky, Open problems in the motivic stable homotopy theory. I, in: Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., Irvine, CA, 1998], which says that over a perfect field all the slices have a canonical structure of modules in Spt over the motivic Eilenberg–MacLane spectrum . Restricting the field even further to the case of characteristic zero, we get that the slices may be interpreted as big motives in the sense of Voevodsky. We also show that the smash product in Spt induces pairings in the motivic Atiyah–Hirzebruch spectral sequence.
Accepté le :
Publié le :
Pablo Pelaez 1
@article{CRMATH_2009__347_9-10_541_0, author = {Pablo Pelaez}, title = {Mixed motives and the slice filtration}, journal = {Comptes Rendus. Math\'ematique}, pages = {541--544}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.028}, language = {en}, }
Pablo Pelaez. Mixed motives and the slice filtration. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 541-544. doi : 10.1016/j.crma.2009.02.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.028/
[1] The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4), Volume 35 (2002), pp. 773-875
[2] Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003
[3] Model Categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999
[4] Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra, Volume 165 (2001), pp. 63-127
[5] M. Hovey, Monoidal model categories, preprint, 1998
[6] Motivic symmetric spectra, Doc. Math., Volume 5 (2000), pp. 445-553
[7] The Homotopy Coniveau Tower, J. Topol., Volume 1 (2008), pp. 217-267
[8] Products in exact couples, Ann. of Math. (2), Volume 59 (1954), pp. 558-569
[9] Triangulated Categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001
[10] P. Pelaez, Multiplicative properties of the slice filtration, preprint, 2008
[11] Modules over motivic cohomology, Adv. Math., Volume 219 (2008), pp. 689-727
[12] On the zero slice of the sphere spectrum, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 106-115
[13] V. Voevodsky, Open problems in the motivic stable homotopy theory. I, in: Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., Irvine, CA, 1998
Cité par Sources :
Commentaires - Politique