[Bornitude du gradient d'une solution du problème de Neumann pour le Laplacien dans un domaine convexe]
On démontre que les solutions du problème de Neumann pour l'équation de Poisson dans un domaine convexe arbitraire de dimension n sont uniformément Lipschitz. Les applications de ce résultat à quelques aspects de régularité de solutions du problème de Neumann sur les polyèdres convexes sont données.
It is shown that solutions of the Neumann problem for the Poisson equation in an arbitrary convex n-dimensional domain are uniformly Lipschitz. Applications of this result to some aspects of regularity of solutions to the Neumann problem on convex polyhedra are given.
Accepté le :
Publié le :
Vladimir Maz'ya 1, 2
@article{CRMATH_2009__347_9-10_517_0, author = {Vladimir Maz'ya}, title = {Boundedness of the gradient of a solution to the {Neumann{\textendash}Laplace} problem in a convex domain}, journal = {Comptes Rendus. Math\'ematique}, pages = {517--520}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.03.001}, language = {en}, }
TY - JOUR AU - Vladimir Maz'ya TI - Boundedness of the gradient of a solution to the Neumann–Laplace problem in a convex domain JO - Comptes Rendus. Mathématique PY - 2009 SP - 517 EP - 520 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.03.001 LA - en ID - CRMATH_2009__347_9-10_517_0 ER -
Vladimir Maz'ya. Boundedness of the gradient of a solution to the Neumann–Laplace problem in a convex domain. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 517-520. doi : 10.1016/j.crma.2009.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.001/
[1] -integrability of the second order derivatives of Green potentials in convex domains, Pacific J. Math., Volume 159 (1993) no. 2, pp. 201-225
[2] -integrability of the second order derivatives for the Neumann problem in convex domains, Indiana Univ. Math. J., Volume 43 (1994) no. 4, pp. 1123-1138
[3] Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre, Math. Ann., Volume 59 (1904) no. 1–2, pp. 20-76
[4] On square summability of highest derivatives of the solution of the Dirichlet problem in a domain with piecewise smooth boundary, (Russian) Izv. Vysš. Učebn. Zav. Matem., Volume 5 (1962) no. 30, pp. 11-21
[5] Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory, Volume 15 (1992) no. 2, pp. 227-261
[6] Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities and an eigenvalue estimate, Commun. Pure Appl. Math., Volume XLIII (1990), pp. 857-883
[7] Potential space estimates for Green potentials in convex domains, Proc. AMS, Volume 119 (1993) no. 1, pp. 225-233
[8] Regularity of the Dirichlet problem in convex domains in the plane, Michigan Math. J., Volume 41 (1994) no. 3, pp. 491-507
[9] Third derivative estimates for Dirichlet's problem in convex domains, Duke Math. J., Volume 73 (1994) no. 2, pp. 257-268
[10] Elliptic Problems in Nonsmooth Domains, Pitman, 1985
[11] Sobolev estimates for the Green potential associated with the Robin–Laplacian in Lipschitz domains satisfying a uniform exterior ball condition, Sobolev Spaces in Mathematics II, Applications in Analysis and Partial Differential Equations, International Mathematical Series, vol. 9, Springer, 2008
[12] The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, (Russian) Czechoslovak Math. J., Volume 14 (1964) no. 89, pp. 386-393
[13] Asymptotic formula for solutions to elliptic equations near the Lipschitz boundary, Ann. Mat. Pura Appl., Volume 184 (2005), pp. 185-213
[14] Closure of an elliptic operator, (Russian) Dokl. Akad. Nauk SSSR, Volume 79 (1951), pp. 723-725
[15] Smeshannaya Zadacha dlya Giperbolicheskogo Uravneniya. (Russian) [The Mixed Problem for a Hyperbolic Equation], Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953
[16] Linear and Quasilinear Elliptic Equations, Academic Press, New York–London, 1968
[17] Solvability in of the Dirichlet problem in a region with smooth irregular boundary, Vestnik Leningrad. Univ., Volume 22 (1967) no. 7, pp. 87-95
[18] The boundedness of the first derivatives of the solution of the Dirichlet problem in a region with smooth nonregular boundary, (Russian) Vestnik Leningrad. Univ., Volume 24 (1969) no. 1, pp. 72-79
[19] On weak solutions of the Dirichlet and Neumann problems, Trans. Moscow Math. Soc., Volume 20 (1969), pp. 135-172
[20] The coercivity of the Dirichlet problem in a domain with irregular boundary, Izv. Vysš. Učebn. Zav. Matem., Volume 4 (1973), pp. 64-76
[21] Sobolev Spaces, Springer, 1985
[22] Weighted estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains, Z. Angew. Math. Mech., Volume 83 (2003) no. 7, pp. 435-467
[23] Sur les équations linéaires du type élliptique à coefficients continus, C. R. Acad. Sci. Paris, Volume 199 (1934), pp. 1366-1368
[24] Sur la presque périodicité des solutions de l'équations des ondes. II, C. R. de l'Acad. Sci. de l'URSS, Volume 48 (1945), pp. 542-545
Cité par Sources :
Commentaires - Politique