[Bornitude du gradient d'une solution du problème de Neumann pour le Laplacien dans un domaine convexe]
On démontre que les solutions du problème de Neumann pour l'équation de Poisson dans un domaine convexe arbitraire de dimension n sont uniformément Lipschitz. Les applications de ce résultat à quelques aspects de régularité de solutions du problème de Neumann sur les polyèdres convexes sont données.
It is shown that solutions of the Neumann problem for the Poisson equation in an arbitrary convex n-dimensional domain are uniformly Lipschitz. Applications of this result to some aspects of regularity of solutions to the Neumann problem on convex polyhedra are given.
Accepté le :
Publié le :
Vladimir Maz'ya 1, 2
@article{CRMATH_2009__347_9-10_517_0, author = {Vladimir Maz'ya}, title = {Boundedness of the gradient of a solution to the {Neumann{\textendash}Laplace} problem in a convex domain}, journal = {Comptes Rendus. Math\'ematique}, pages = {517--520}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.03.001}, language = {en}, }
TY - JOUR AU - Vladimir Maz'ya TI - Boundedness of the gradient of a solution to the Neumann–Laplace problem in a convex domain JO - Comptes Rendus. Mathématique PY - 2009 SP - 517 EP - 520 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.03.001 LA - en ID - CRMATH_2009__347_9-10_517_0 ER -
Vladimir Maz'ya. Boundedness of the gradient of a solution to the Neumann–Laplace problem in a convex domain. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 517-520. doi : 10.1016/j.crma.2009.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.001/
[1]
[2]
[3] Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre, Math. Ann., Volume 59 (1904) no. 1–2, pp. 20-76
[4] On square summability of highest derivatives of the solution of the Dirichlet problem in a domain with piecewise smooth boundary, (Russian) Izv. Vysš. Učebn. Zav. Matem., Volume 5 (1962) no. 30, pp. 11-21
[5] Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory, Volume 15 (1992) no. 2, pp. 227-261
[6] Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities and an eigenvalue estimate, Commun. Pure Appl. Math., Volume XLIII (1990), pp. 857-883
[7] Potential space estimates for Green potentials in convex domains, Proc. AMS, Volume 119 (1993) no. 1, pp. 225-233
[8] Regularity of the Dirichlet problem in convex domains in the plane, Michigan Math. J., Volume 41 (1994) no. 3, pp. 491-507
[9] Third derivative estimates for Dirichlet's problem in convex domains, Duke Math. J., Volume 73 (1994) no. 2, pp. 257-268
[10] Elliptic Problems in Nonsmooth Domains, Pitman, 1985
[11] Sobolev estimates for the Green potential associated with the Robin–Laplacian in Lipschitz domains satisfying a uniform exterior ball condition, Sobolev Spaces in Mathematics II, Applications in Analysis and Partial Differential Equations, International Mathematical Series, vol. 9, Springer, 2008
[12] The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, (Russian) Czechoslovak Math. J., Volume 14 (1964) no. 89, pp. 386-393
[13] Asymptotic formula for solutions to elliptic equations near the Lipschitz boundary, Ann. Mat. Pura Appl., Volume 184 (2005), pp. 185-213
[14] Closure of an elliptic operator, (Russian) Dokl. Akad. Nauk SSSR, Volume 79 (1951), pp. 723-725
[15] Smeshannaya Zadacha dlya Giperbolicheskogo Uravneniya. (Russian) [The Mixed Problem for a Hyperbolic Equation], Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953
[16] Linear and Quasilinear Elliptic Equations, Academic Press, New York–London, 1968
[17] Solvability in
[18] The boundedness of the first derivatives of the solution of the Dirichlet problem in a region with smooth nonregular boundary, (Russian) Vestnik Leningrad. Univ., Volume 24 (1969) no. 1, pp. 72-79
[19] On weak solutions of the Dirichlet and Neumann problems, Trans. Moscow Math. Soc., Volume 20 (1969), pp. 135-172
[20] The coercivity of the Dirichlet problem in a domain with irregular boundary, Izv. Vysš. Učebn. Zav. Matem., Volume 4 (1973), pp. 64-76
[21] Sobolev Spaces, Springer, 1985
[22] Weighted
[23] Sur les équations linéaires du type élliptique à coefficients continus, C. R. Acad. Sci. Paris, Volume 199 (1934), pp. 1366-1368
[24] Sur la presque périodicité des solutions de l'équations des ondes. II, C. R. de l'Acad. Sci. de l'URSS, Volume 48 (1945), pp. 542-545
- Regularity in shape optimization under convexity constraint, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 3 | DOI:10.1007/s00526-023-02440-7
- No-gap second-order optimality conditions for optimal control of a non-smooth quasilinear elliptic equation, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. 62 | DOI:10.1051/cocv/2020092
- The conormal and Robin boundary value problems in nonsmooth domains satisfying a measure condition, Journal of Functional Analysis, Volume 281 (2021) no. 9, p. 109167 | DOI:10.1016/j.jfa.2021.109167
- A mathematical model for bleb regulation in zebrafish primordial germ cells, Mathematical Medicine and Biology: A Journal of the IMA, Volume 38 (2021) no. 2, p. 218 | DOI:10.1093/imammb/dqab002
- A Fokker–Planck Approach to the Reconstruction of a Cell Membrane Potential, SIAM Journal on Scientific Computing, Volume 43 (2021) no. 3, p. B623 | DOI:10.1137/20m131504x
- Gradient estimates via rearrangements for solutions of some Schrödinger equations, Analysis and Applications, Volume 16 (2018) no. 03, p. 339 | DOI:10.1142/s0219530517500142
- Global boundedness of the gradient for a class of Schrödinger equations, Nonlinear Analysis: Theory, Methods Applications, Volume 152 (2017), p. 102 | DOI:10.1016/j.na.2017.01.002
- L∞ estimate for a limiting form of Ginzburg–Landau systems in convex domains, Journal of Mathematical Analysis and Applications, Volume 438 (2016) no. 1, p. 328 | DOI:10.1016/j.jmaa.2016.01.077
- The Neumann problem of Laplace’s equation in semiconvex domains, Nonlinear Analysis, Volume 133 (2016), p. 275 | DOI:10.1016/j.na.2015.12.017
- Gradient bounds for -harmonic systems with vanishing Neumann (Dirichlet) data in a convex domain, Nonlinear Analysis: Theory, Methods Applications, Volume 100 (2014), p. 78 | DOI:10.1016/j.na.2014.01.009
- Recent progress in elliptic equations and systems of arbitrary order with rough coefficients in Lipschitz domains, Bulletin of Mathematical Sciences, Volume 1 (2011) no. 1, p. 33 | DOI:10.1007/s13373-011-0003-6
- Local Lipschitz regularity for degenerate elliptic systems, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 27 (2010) no. 6, p. 1361 | DOI:10.1016/j.anihpc.2010.07.002
- The Neumann problem and Helmholtz decomposition in convex domains, Journal of Functional Analysis, Volume 259 (2010) no. 8, p. 2147 | DOI:10.1016/j.jfa.2010.07.005
Cité par 13 documents. Sources : Crossref
Commentaires - Politique